- Syntax of λ-terms Are the following λ-terms well formed ?
(1)
a. $\quad(x) x \cdot x$
b. $\lambda x . \lambda y . \lambda z . u$
c. $\quad \lambda y .(\lambda x .(y)) x$
d. $\lambda x .(x x)$
e. (x) $\lambda y . x$
- Syntax of λ-terms Represent the following terms as (syntactic) trees.
(2) a. $\quad \lambda f \cdot \lambda g \cdot \lambda x \cdot(f)(g) x$
b. $\quad \lambda f . \lambda g . \lambda x \cdot((f) g) x$
c. $\quad \lambda f .((\lambda g . \lambda x . f) g) x$
- β-reduction : Reduce as much as possible the following λ-terms
a. $\quad(\lambda x .(x) x) \lambda x . x$
b. $\quad((\lambda x . \lambda y .(y) x) f) \lambda x . x$
c. $\quad(\lambda n . \lambda f . \lambda x .(f)((n) f) x) \lambda(f) x .(f) x$
- Redex \& β-reduction Identify all redexes in the following term, and reduce it as much as possible.

$$
\begin{equation*}
((\lambda S . \lambda V \cdot(S)(V) \lambda Q \cdot(Q) m) \lambda P .(P) j) \lambda O \cdot \lambda y \cdot(O) \lambda z \cdot((k i s s) y) z \tag{4}
\end{equation*}
$$

- Notation conventions

Since dot + parenthesis notation can become rather heavy, the following conventions are often adopted :

$$
\begin{aligned}
& \lambda x_{1} \cdot \lambda x_{2} \ldots \lambda x_{n} \cdot t=\lambda x_{1} x_{2} \ldots x_{n} \cdot t \\
& t\left(t_{1}\right)\left(t_{2}\right) \ldots\left(t_{m}\right)=t t_{1} t_{2} \ldots t_{m}
\end{aligned}
$$

Example : $\lambda x y . x y$ is read $\lambda x . \lambda y . x(y)$.
Note : Under this convention, the notation $a b c$ is not ambiguous: it corresponds to the term $((a) b) c$, or $a f(a f(a, b), c)$. To express the (different) term $a f(a, a f(b, c))$ at least one pair of parenthesis has to be inserted $(a) b c$.
Propose fully parenthesized versions of the following terms. If they can be reduced, reduce them.

$$
\begin{array}{ll}
\text { a. } & \lambda x z \cdot x y z \tag{5}\\
\text { b. } & (\lambda x \cdot \lambda y \cdot f x y) x y \\
\text { c. } & (\lambda x \cdot \lambda y \cdot x y y) \lambda y \cdot \lambda a \cdot y
\end{array}
$$

- Church's integers Check that Church's combinators for integers are working as intened : compute $1+2,0 \times 2$, $\operatorname{Succ}(3)$. Count the number of necessary β-reductions.

$$
\begin{array}{ll}
0={ }_{\text {def }} \lambda f \cdot \lambda x \cdot x & \text { Succ }=_{\operatorname{def}} \lambda n \cdot \lambda f \cdot \lambda x \cdot(f)((n) f) x \\
1==_{\text {def }} \lambda f \cdot \lambda x \cdot(f) x & +\equiv \lambda m \cdot \lambda n \cdot \lambda f \cdot \lambda x \cdot((m) f)((n) f) x \\
\mathrm{n}==_{\text {def }} \lambda f \cdot \lambda x \cdot(f)(f) \ldots(f) x, \text { with n times } f & \times \equiv \lambda m \cdot \lambda n \cdot \lambda f \cdot(m)(n) f
\end{array}
$$

