Frege's principle

 $\underset{\bigcirc}{\mathsf{Typed}} \ \lambda\text{-calculus}$

Towards a NL fragment

Compositionality & λ -calculus

Pascal Amsili

January 2023

Sorbonne !!!

Frege's principle

Typed λ -calculus

Towards a NL fragment

Overview

Untyped (pure) λ -calculus

Sorbonne III Nouvelle III

Syntax

Let V be a countable set of variables. The set of all well-formed terms, Λ , is defined inductively as follows :

• $(t_1)t_2 \in \Lambda$ $\forall t_1, t_2 \in \Lambda$

 $\underset{\bigotimes}{\mathsf{Typed}} \ \lambda\text{-calculus}$

Towards a NL fragment

Syntax (cont'd)

The term $(\lambda x.(x)x)y$ has this syntactic structure :

af(la(x, af(x, x)), y)

Sorbonne III Nouvelle III

Typed λ -calculus

Towards a NL fragment

Variable substitution

•
$$x_{[x:=z]} \rightsquigarrow z$$

• $y_{[x:=z]} \rightsquigarrow y \text{ si } y \neq x$
• $(M)N_{[x:=z]} \rightsquigarrow (M_{[x:=z]})N_{[x:=z]}$
• $\lambda x.M_{[x:=z]} \rightsquigarrow \lambda z.M_{[x:=z]}$
• $\lambda y.M_{[x:=z]} \rightsquigarrow \lambda y.M_{[x:=z]}$ if $x \neq y$

Sorbonne ;;; Nouvelle ;;;

Typed λ -calculus

Towards a NL fragment

Term substitution

•
$$x_{[x:=t]} \rightsquigarrow t$$

• $y_{[x:=t]} \rightsquigarrow y \text{ si } y \neq x$
• $(M)N_{[x:=t]} \rightsquigarrow (M_{[x:=t]})N_{[x:=t]}$
• $\lambda y.M_{[x:=t]} \rightsquigarrow \lambda y.M_{[x:=t]}$ if y is not free in t.

Sorbonne !!!

Frege's principle

Typed λ -calculus

Towards a NL fragment

α equivalence

$$\lambda x.\varphi \equiv \lambda z.\varphi_{[x:=z]}$$

Frege's principle

Typed λ -calculus

Towards a NL fragment

Convention on variables

Let M be a term, x a variable. By convention, the occurrences of x in M are either all free or all bound.

It can be shown that every term constructed without respecting this convention is α -equivalent to a term that respects the convention.

Sorbonne ;;;

Frege's principle

Typed λ -calculus

Towards a NL fragment

β equivalence

 $(\lambda x.M)N \equiv M_{[x:=N]}$

Sorbonne ;;; Nouvelle ;;;

Frege's principle

Typed λ -calculus

Towards a NL fragment

Combinators

A combinator is a closed λ -term (ie without free variable)

Sorbonne ;;; Nouvelle ;;;

Identity

$$I =_{def} \lambda x.x$$

For any term $t : (I)t \equiv t$

Sorbonne ;;; Nouvelle ;;;

$$T =_{\text{def}} \lambda x.\lambda y.x$$
$$F =_{\text{def}} \lambda x.\lambda y.y$$

This encoding allows to encode an if-then-else function :

if P then Q else
$$R =_{\text{def}} ((P)Q)R$$
.

if P is β -equivalent to T then ((P)Q)R will yield Q, while if P is β -equivalent (or β -reduces) to F, the outcome will be Q.

Untyped (pure) $\lambda\text{-calculus}$ $_{\odot}$

00000

Frege's principle

Typed λ -calculus

Towards a NL fragment

The IF combinator

$$\mathsf{IF} =_{\mathrm{def}} \lambda b. \lambda t. \lambda f. ((b)t) f$$

$$\begin{array}{l} \mathsf{NOT} =_{\mathrm{def}} \lambda u.((u)\mathsf{F})\mathsf{T} \\ \mathsf{AND} =_{\mathrm{def}} \lambda u.\lambda v.((u)v)\mathsf{F} \\ \mathsf{OR} =_{\mathrm{def}} \lambda u.\lambda v.((u)\mathsf{T})v \end{array}$$

Sorbonne !!!

00000

Frege's principle

Typed λ -calculus

Towards a NL fragment

Church numerals

$$0 =_{def} \lambda f . \lambda x. x$$

$$1 =_{def} \lambda f . \lambda x. (f) x$$

$$n =_{def} \lambda f . \lambda x. (f) (f) ... (f) x$$

with n times f

Succ =_{def}
$$\lambda n. \lambda f. \lambda x.(f)((n)f)x$$

+ $\equiv \lambda m. \lambda n. \lambda f. \lambda x.((m)f)((n)f)x$
* $\equiv \lambda m. \lambda n. \lambda f.(m)(n)f$

Sorbonne !!!

Frege's principle

Typed λ -calculus

Towards a NL fragment

Overview

Untyped (pure) λ -calculus

Syntax Substitution Equivalences Combinators

Frege's principle

Typed λ -calculus

Type theory Montague's language

Towards a NL fragment

Simple sentence Roadmap for the fragment Quantified sentences Excursus : Generalized Quantifiers Transitive verbs Negation Other phenomena

Untyped (pure) λ-calculus

Frege's principle

Typed λ -calculus

Towards a NL fragment

Frege's principle

The meaning of an expression is uniquely determined by the meanings of its parts and their mode of combination.

Motivation : Humbolt's view on finite means for infinite sentences

Sorbonne ;;;

Consequences

- Locality principle : lexical items have a meaning that is independant of the expression they occur in.
- Substitution principle : synonymous expressions may be substituted for each other without changing the meaning of the complex expression in which they occur.
- Parts of well formed sentences have « meaning »
- Meanings can be « composed » : Frege's saturation idea

 λ -terms can represent individual meanings and functional application can represent semantic composition.

Frege's principle

Towards a NL fragment

Overview

Untyped (pure) λ -calculus

Syntax Substitution Equivalences Combinators

Frege's principle

Typed λ -calculus

Type theory Montague's language

Towards a NL fragment

Simple sentence Roadmap for the fragment Quantified sentences Excursus : Generalized Quantifiers Transitive verbs Negation Other phenomena

Typed λ -calculus

Towards a NL fragment

- 1. *e* is a type
- 2. t is a type
- 3. if a and b are types, then $\langle a, b \rangle$ is a type

Sorbonne ;;; Nouvelle ;;;

Towards a NL fragment

- 1. e is a type
- 2. t is a type
- 3. if a and b are types, then $\langle a, b \rangle$ is a type
 - $D_e = A$
- $D_t = \{0, 1\}$
- $D_{\langle a,b
 angle} =$ the set of mappings from D_a to D_b .

Frege's principle

Meaningful expressions

For a, b types :

- variables and individual constants of type *a* belong to *ME_a*.
- if $\alpha \in ME_{\langle a,b \rangle}$ and $\beta \in ME_a$ then $(\alpha)\beta \in ME_b$.
- if u is a variable of type a and $\alpha \in ME_b$, then $\lambda u.\alpha \in ME_{(a,b)}$.
- if φ and ψ are in ME_t , then the following expressions are also in ME_t : $\neg \varphi$, $(\varphi \land \psi)$, $(\varphi \lor \psi)$, $(\varphi \to \psi)$.
- if φ is in ME_t and u is a type a variable, then $\forall u\varphi$ and $\exists u\varphi$ are in ME_t .

Sorbonne III Nouvelle III

Frege's principle

Typed λ -calculus

Towards a NL fragment

Overview

Untyped (pure) λ -calculus

Syntax Substitution Equivalences Combinators rege's principle

Typed λ -calculus

Type theory Montague's language

Towards a NL fragment

Simple sentence Roadmap for the fragment Quantified sentences Excursus : Generalized Quantifiers Transitive verbs Negation Other phenomena

Untyped (pure) λ -calculus	Frege's principle	Typed λ -calculus	Towards a NL fragment
000			0 000000 0000000 0000000

S	\rightarrow	NP	VP
[[<i>S</i>]]	\leftarrow	([[<i>VP</i>]])	[<i>NP</i>]
0	\leftarrow	(2)	1
NP	\rightarrow	PN	
0	\leftarrow	1	
VP	\rightarrow	V	
0	\leftarrow	1	
0 <i>PN</i>	$\leftarrow \rightarrow$	1 Sam	
0 <i>PN</i> 0	$\leftarrow \to \leftarrow \leftarrow$	1 Sam s	
0 <i>PN</i> 0 <i>V</i>	$\begin{array}{c} \leftarrow \\ \rightarrow \\ \leftarrow \\ \rightarrow \end{array}$	1 Sam <i>s</i> sleeps	

Sorbonne ;;; Nouvelle ;;;

Untyped (pure) λ-calculus

Frege's principle

Typed λ -calculus

Towards a NL fragment

Roadmap for the fragment

- A cat enters
- Sam likes Pam
- Everyone likes Pam
- Everyone likes an actress
- Sam is mortal
- Sam met a tall person
- Sam doesn't sleep

 $\exists x (Cx \land Ex) \\ Lsp (or ((L)s)p \\ \forall x (Px \rightarrow Lxp) \\ \forall x (Px \rightarrow \exists y (Ay \land Lxy)) \\ Ms \\ \exists x ((Px \land Tx) \land Msx) \\ \neg Ss$