A crash course in First Order Logic

Pascal Amsili

Université Sorbonne Nouvelle Lattice (UMR 8094 - CNRS - ENS/PSL - Paris 3)

Cogmaster, November 2022

Sorbonne III Nouvelle III

1/16

Propositional Logic

- 1. Base objects
 - 1.1 Propositions
 - 1.2 Logical connectives
- 2. Syntax
 - 2.1 wffs
 - 2.2 syntactic tree
- 3. Semantics
 - 3.1 Valuation
 - 3.2 Truth tables (simple and composite)
- 4. Reasoning
 - 4.1 Properties of formulae
 - 4.2 Relations between formulae
 - 4.3 Deduction theorem

Well-formed formulae

Let L_p be the language of propositional logic. The vocabulary of L_p comprises (i) a set of *proposition symbols* P, Q, R..., (ii) a unary connective \neg , (iii) binary connectives \land , \lor , \rightarrow , \leftrightarrow , and (iv) parenthesis (&). The well formed formulae (wffs) of L_p are given by:

- (i). All proposition symbols are wffs.
- (ii). If φ is a wff of L_p , then $\neg \varphi$ is also a wff of L_p .
- (iii). If φ and ψ are wffs of L_p , then so are $(\varphi \land \psi)$, $(\varphi \lor \psi)$, $(\varphi \to \psi)$, and $(\varphi \leftrightarrow \psi)$.
- (iv). Nothing else is a wff
 (Nothing that cannot be constructed by successive steps of (i), (ii) or (iii) is a wff).

Sorbonne ;;; Nouvelle ;;;

Well-formed formulae

$$\begin{array}{rrrr} \mathsf{WF} & \rightarrow & \mathsf{P} & \mid \mathsf{Q} & \mid \mathsf{R} \\ \mathsf{WF} & \rightarrow & (\ \mathsf{WF} \ \mathsf{BOP} \ \mathsf{WF} \) \\ \mathsf{WF} & \rightarrow & \neg \ \mathsf{WF} \\ \mathsf{BOP} & \rightarrow & \land & \mid \lor & \mid \rightarrow \end{array}$$

Sorbonne III Nouvelle III

4/16

Syntactic tree

Sorbonne ;;; Nouvelle ;;;

Valuation

Let V be a *truth assignment* (or *valuation*) that maps all proposition symbols to a truth value (it can also be seen as a *model*). Then predicate calculus can be defined inductively as follows:

(i). If
$$\varphi$$
 is a proposition symbol, then $\llbracket \varphi \rrbracket_V = V(\varphi)$;
(ii). If φ is a wff, then $\llbracket \neg \varphi \rrbracket = 1$ if and only if $\llbracket \varphi \rrbracket = 0$;
(iii). If φ and ψ are wffs, then

•
$$\llbracket (\varphi \wedge \psi) \rrbracket = 1$$
 iff $\llbracket \varphi \rrbracket = 1$ and $\llbracket \psi \rrbracket = 1$;

•
$$\llbracket (\varphi \lor \psi) \rrbracket = 0$$
 iff $\llbracket \varphi \rrbracket = 0$ and $\llbracket \psi \rrbracket = 0$;

•
$$\llbracket (\varphi \to \psi) \rrbracket = 0$$
 iff $\llbracket \varphi \rrbracket = 1$ and $\llbracket \psi \rrbracket = 0$;

•
$$\llbracket (\varphi \leftrightarrow \psi) \rrbracket = 1$$
 iff $\llbracket \varphi \rrbracket = \llbracket \psi \rrbracket$;

Sorbonne III Nouvelle III

Truth tables

Sorbonne ;;;

Composite truth table

Sorbonne III Nouvelle

8/16

Predicate Logic

- 1. Base concepts
 - 1.1 "Atomic" sentences
 - 1.2 Quantifiers
- 2. Syntax: wffs
- 3. Semantics
 - 3.1 First Order Models
 - 3.2 Truth definition
- 4. Results
 - 4.1 Equivalences
 - 4.2 About "donkey sentences"

Sorbonne III Nouvelle

Quantifiers

Sorbonne III Nouvelle III

Syntax I

Definition 1

- (i) If A is a predicate constant, of arity n, and each $t_1...t_n$ an individual constant or variable, then $A(t_1,...,t_n)$ is a wff.
- (ii) If φ is a wff, then so is $\neg \varphi$.
- (iii) If φ and ψ are wffs, then so are $(\varphi \land \psi)$, $(\varphi \lor \psi)$, $(\varphi \to \psi)$, and $(\varphi \leftrightarrow \psi)$.
- (iv) If φ is a wff and x a variable, then $\forall x \varphi$ and $\exists x \varphi$ are wffs.
- (v) Nothing else is a wff.

Syntax II

Definition 2

If $\forall x\psi$ is a sub-formula of φ , then ψ is called the **scope** of this occurrence of the quantifier $\forall x$ in φ . Same definition for $\exists x$.

Definition 3

- (a) An occurrence of a variable x in the formula φ (which is not part of a quantifer) is called free if this occurrence of x is not in the scope of a quantifier ∀x ou ∃x occurring in φ.
- (b) If ∀xψ (or ∃xψ) is a sub-formula of φ and x is free in ψ, then this occurrence of x is called **bound** by the quantifier ∀x (or ∃x).

Definition 4

A sentence is a formula with no free variable.

Tarskian truth definition

Let $\llbracket \alpha \rrbracket_{\mathcal{M}}^{\mathcal{G}}$ be the denotation of α in the model $\mathcal{M} = \langle D, I \rangle$ and with the assignment g.

 $[t]_{M}^{g} = I(t)$ if t is an individual constant $\llbracket t \rrbracket_{M}^{g} = g(t)$ if t is a variable $\llbracket P(t_1, \dots t_n) \rrbracket_{\mathcal{M}}^g = 1 \text{ iff } \langle \llbracket t_1 \rrbracket_{\mathcal{M}}^g, \dots \llbracket t_n \rrbracket_{\mathcal{M}}^g \rangle \in I(P).$ If φ and ψ are wfss,
$$\begin{split} & \llbracket \neg \varphi \rrbracket_{\mathcal{M}}^{g} = 1 & \text{iff} \quad \llbracket \varphi \rrbracket_{\mathcal{M}}^{g} = 0 \\ & \llbracket (\varphi \wedge \psi) \rrbracket_{\mathcal{M}}^{g} = 1 & \text{iff} \quad \llbracket \varphi \rrbracket_{\mathcal{M}}^{g} = 1 & \text{and} \quad \llbracket \psi \rrbracket_{\mathcal{M}}^{g} = 1 \\ & \llbracket (\varphi \vee \psi) \rrbracket_{\mathcal{M}}^{g} = 1 & \text{iff} \quad \llbracket \varphi \rrbracket_{\mathcal{M}}^{g} = 1 & \text{or} \quad \llbracket \psi \rrbracket_{\mathcal{M}}^{g} = 1 \\ & \llbracket (\varphi \to \psi) \rrbracket_{\mathcal{M}}^{g} = 1 & \text{iff} \quad \llbracket \varphi \rrbracket_{\mathcal{M}}^{g} = 0 & \text{or} \quad \llbracket \psi \rrbracket_{\mathcal{M}}^{g} = 1 \end{split}$$
 $\llbracket \exists y \ \varphi
rbrace_{\mathcal{M}}^{\mathcal{G}} = 1$ iff there is a $d \in D$ s.t. $\llbracket \varphi
rbrace_{\mathcal{M}}^{\mathcal{G}[y/d]} = 1$

similarly,

$$\llbracket \forall y \ \varphi \rrbracket_{\mathcal{M}}^{g} = 1 \text{ iff for all } d \in D, \ \llbracket \varphi \rrbracket_{\mathcal{M}}^{g[y/d]} = 1$$

Il φ is a sentence:

 $\llbracket \varphi \rrbracket_{\mathcal{M}} = 1$ iff there is an assignment g such that $\llbracket \varphi \rrbracket_{\mathcal{M}}^{g} = 1$ Sorbonne Nouvelle

Equivalences I

• Bound variables are "dummy": their name no longer matters.

 $\begin{array}{rcl} \forall x \ Fx &\equiv & \forall y \ Fy \\ But \ beware \ of \ unintended \ captures: \\ \forall x \ (Fx \land Gy) &\not\equiv & \forall y \ (Fy \land Gy) \end{array}$

• Duality rules (de Morgan laws)

 $\begin{array}{rcl} \forall x \ \alpha &\equiv \ \neg \exists \ \neg \alpha \\ & for \ instance: \\ \forall x \ Rx &\equiv \ \neg \exists \ \neg Rx \\ & All \ is \ relative &\approx \ Nothing \ is \ absolute \ (\approx \ non \ relative) \\ \forall x \ (Px \rightarrow Kx) &\equiv \ \neg \exists x \ (Px \land \neg Kx) \\ & All \ professors \ are \ kind &\approx \ There \ are \ no \ non-kind \ professors \\ & Other \ variants: \\ & \exists x \ \alpha &\equiv \ \neg \forall x \ \neg \alpha \\ & \neg \exists x \ \alpha &\equiv \ \forall x \ \neg \alpha \\ & \neg \forall x \ \alpha &\equiv \ \exists x \ \neg \alpha \end{array}$

Equivalences II

• Distribution rules:

$$\begin{array}{rcl} \forall x \ (\alpha \land \beta) & \equiv & (\forall x \ \alpha \land \forall x \ \beta) \\ \mbox{All is rare and expensive} & \approx & \mbox{All is rare and all is expensive} \\ & & & \\ &$$

$$\exists x (\alpha \lor \beta) \equiv (\exists x \alpha \lor \exists x \beta)$$

But:
$$\exists x (\alpha \land \beta) \not\equiv (\exists x \alpha \land \exists x \beta)$$

$$\exists x (\alpha \to \beta) \equiv (\forall x \alpha \to \exists x \beta)$$

Sorbonne III Nouvelle III

Equivalences III

• Conditional distribution ($\bar{\beta}$ doesn't contain free occurrences of x)

$$\begin{array}{rcl} \bar{\beta} &\equiv & \forall x \bar{\beta} \\ \bar{\beta} &\equiv & \exists x \bar{\beta} \end{array}$$

$$\begin{array}{rcl} \forall x \ (\alpha \lor \bar{\beta}) &\equiv & (\forall x \ \alpha \lor \bar{\beta}) \\ \exists x \ (\alpha \land \bar{\beta}) &\equiv & \exists x \ \alpha \land \bar{\beta} \\ \forall x \ (\alpha \to \bar{\beta}) &\equiv & \exists x \ \alpha \to \bar{\beta} \end{array}$$
Every entity is such that if it breaks, there is noise $\approx & \text{If some entity breaks,} \\ \forall x \ (\bar{\beta} \to \alpha) &\equiv & \bar{\beta} \to \forall x \ \alpha \end{array}$
For all person, if there is noise, s/he is upset $\approx & \text{If there is noise, every} \end{array}$

Sorbonne III