A crash course in First Order Logic

Pascal Amsili

Université Sorbonne Nouvelle
Lattice (UMR 8094 - CNRS - ENS/PSL - Paris 3)

Cogmaster, November 2022

Propositional Logic

1. Base objects
1.1 Propositions
1.2 Logical connectives
2. Syntax
2.1 wffs
2.2 syntactic tree
3. Semantics
3.1 Valuation
3.2 Truth tables (simple and composite)
4. Reasoning
4.1 Properties of formulae
4.2 Relations between formulae
4.3 Deduction theorem

Well-formed formulae

Let L_{p} be the language of propositional logic. The vocabulary of L_{p} comprises (i) a set of proposition symbols $P, Q, R \ldots$, (ii) a unary connective \neg, (iii) binary connectives $\wedge, \vee, \rightarrow, \leftrightarrow$, and (iv) parenthesis (\&).

The well formed formulae (wffs) of L_{p} are given by:
(i). All proposition symbols are wffs.
(ii). If φ is a wff of L_{p}, then $\neg \varphi$ is also a wff of L_{p}.
(iii). If φ and ψ are wffs of L_{p}, then so are $(\varphi \wedge \psi),(\varphi \vee \psi)$, $(\varphi \rightarrow \psi)$, and $(\varphi \leftrightarrow \psi)$.
(iv). Nothing else is a wff (Nothing that cannot be constructed by successive steps of (i), or (iii) is a wff).

Well-formed formulae

$$
\begin{aligned}
& \text { WF } \rightarrow \mathrm{P}|\mathrm{Q}| \mathrm{R} \\
& \mathrm{WF} \rightarrow(\mathrm{WF} \text { BOP WF }) \\
& \mathrm{WF} \\
& \mathrm{BOP} \\
& \rightarrow \neg \mathrm{WF} \\
& \mathrm{BOP} \mid \vee
\end{aligned}
$$

Syntactic tree

Valuation

Let V be a truth assignment (or valuation) that maps all proposition symbols to a truth value (it can also be seen as a model). Then predicate calculus can be defined inductively as follows:
(i). If φ is a proposition symbol, then $\llbracket \varphi \rrbracket_{V}=V(\varphi)$;
(ii). If φ is a wff, then $\llbracket \neg \varphi \rrbracket=1$ if and only if $\llbracket \varphi \rrbracket=0$;
(iii). If φ and ψ are wffs, then

- $\llbracket(\varphi \wedge \psi) \rrbracket=1$ iff $\llbracket \varphi \rrbracket=1$ and $\llbracket \psi \rrbracket=1$;
- $\llbracket(\varphi \vee \psi) \rrbracket=0$ iff $\llbracket \varphi \rrbracket=0$ and $\llbracket \psi \rrbracket=0$;
- $\llbracket(\varphi \rightarrow \psi) \rrbracket=0$ iff $\llbracket \varphi \rrbracket=1$ and $\llbracket \psi \rrbracket=0$;
- $\llbracket(\varphi \leftrightarrow \psi) \rrbracket=1$ iff $\llbracket \varphi \rrbracket=\llbracket \psi \rrbracket$;

Truth tables

φ	$\neg \varphi$	φ	ψ	$\varphi \wedge \psi$	φ	ψ	$\varphi \vee \psi$	φ	ψ	$\varphi \rightarrow \psi$
0	1	0	0	0	0	0	0	0	0	1
1	0	0	1	0	0	1	1	0	1	1
		1	0	0	1	0	1	1	0	0
		1	1	1	1	1	1	1	1	1
φ	ψ	$\varphi \leftrightarrow \psi$								
0	0	1								
0	1	0								
1	0	0								
1	1	1								

Composite truth table

$((p$	\wedge	$(q$	\rightarrow	$r))$	\vee	$(r$	\rightarrow	$p))$
0	0	0	1	0	1	0	1	0
0	0	0	1	1	0	1	0	0
0	0	1	0	0	1	0	1	0
0	0	1	1	1	0	1	0	0
1	1	0	1	0	1	0	1	1
1	1	0	1	1	1	1	1	1
1	0	1	0	0	1	0	1	1
1	1	1	1	1	1	1	1	1

Predicate Logic

1. Base concepts
1.1 "Atomic" sentences
1.2 Quantifiers
2. Syntax: wffs
3. Semantics
3.1 First Order Models
3.2 Truth definition
4. Results
4.1 Equivalences
4.2 About "donkey sentences"

Quantifiers

Syntax I

Definition 1

(i) If A is a predicate constant, of arity n, and each $t_{1} \ldots t_{n}$ an individual constant or variable, then $A\left(t_{1}, \ldots, t_{n}\right)$ is a wff.
(ii) If φ is a wff, then so is $\neg \varphi$.
(iii) If φ and ψ are wffs, then so are $(\varphi \wedge \psi),(\varphi \vee \psi),(\varphi \rightarrow \psi)$, and $(\varphi \leftrightarrow \psi)$.
(iv) If φ is a wff and x a variable, then $\forall x \varphi$ and $\exists x \varphi$ are wffs.
(v) Nothing else is a wff.

Syntax II

Definition 2

If $\forall x \psi$ is a sub-formula of φ, then ψ is called the scope of this occurrence of the quantifier $\forall x$ in φ. Same definition for $\exists x$.
Definition 3
(a) An occurrence of a variable x in the formula ϕ (which is not part of a quantifer) is called free if this occurrence of x is not in the scope of a quantifier $\forall x$ ou $\exists x$ occurring in ϕ.
(b) If $\forall x \psi$ (or $\exists x \psi$) is a sub-formula of ϕ and x is free in ψ, then this occurrence of x is called bound by the quantifier $\forall x$ (or $\exists x$).
Definition 4
A sentence is a formula with no free variable.

Tarskian truth definition

Let $\llbracket \alpha \rrbracket_{\mathcal{M}}^{g}$ be the denotation of α in the model $\mathcal{M}=\langle D, I\rangle$ and with the assignment g.
$\llbracket t \rrbracket_{\mathcal{M}}^{g}=I(t)$ if t is an individual constant
$\llbracket t \rrbracket_{\mathcal{M}}^{\mathcal{G}}=g(t)$ if t is a variable

$$
\llbracket P\left(t_{1}, \ldots t_{n}\right) \rrbracket_{\mathcal{M}}^{g}=1 \text { iff }\left\langle\llbracket t_{1} \rrbracket_{\mathcal{M}}^{g}, \ldots \llbracket t_{n} \rrbracket_{\mathcal{M}}^{g}\right\rangle \in I(P)
$$

If φ and ψ are wfss,

$$
\begin{array}{llll}
\llbracket \neg \varphi \rrbracket_{\mathcal{M}}^{g}=1 & \text { iff } & \llbracket \varphi \rrbracket_{\mathcal{M}}^{g}=0 & \\
\llbracket(\varphi \wedge \psi) \rrbracket_{\mathcal{M}}^{g}=1 & \text { iff } & \llbracket \varphi \rrbracket_{\mathcal{M}}^{\mathcal{G}}=1 & \text { and } \llbracket \psi \rrbracket_{\mathcal{M}}^{g}=1 \\
\llbracket(\varphi \vee \psi) \rrbracket_{\mathcal{M}}^{g}=1 & \text { iff } & \llbracket \varphi \rrbracket_{\mathcal{M}}^{g}=1 & \text { or } \llbracket \psi \psi \rrbracket_{\mathcal{M}}^{g}=1 \\
\llbracket(\varphi \rightarrow \psi) \rrbracket_{\mathcal{M}}^{g}=1 & \text { iff } & \llbracket \varphi \rrbracket_{\mathcal{M}}^{g}=0 & \text { or } \llbracket \psi \rrbracket_{\mathcal{M}}^{g}=1
\end{array}
$$

$$
\llbracket \exists y \varphi \rrbracket_{\mathcal{M}}^{g}=1 \text { iff there is a } d \in D \text { s.t. } \llbracket \varphi \rrbracket_{\mathcal{M}}^{g[y / d]}=1
$$

similarly,

$$
\llbracket \forall y \varphi \rrbracket_{\mathcal{M}}^{g}=1 \text { iff for all } d \in D, \llbracket \varphi \rrbracket_{\mathcal{M}}^{g[y / d]}=1
$$

II φ is a sentence:
$\llbracket \varphi \rrbracket_{\mathcal{M}}=1$ iff there is an assignment g such that $\llbracket \varphi \rrbracket_{\mathcal{M}}^{g}=1$ Sorbone

Equivalences I

- Bound variables are "dummy": their name no longer matters.

$$
\forall x F x \equiv \forall y F y
$$

But beware of unintended captures:

$$
\forall x(F x \wedge G y) \quad \not \equiv \quad \forall y(F y \wedge G y)
$$

- Duality rules (de Morgan laws)

$$
\begin{aligned}
& \forall x \alpha \equiv \neg \exists \neg \alpha \\
& \text { for instance: } \\
& \forall x R x \equiv \neg \exists \neg R x \\
& \text { All is relative }\approx \text { Nothing is absolute (} \approx \text { non relative }) \\
& \forall x(P x \rightarrow K x) \equiv \neg \exists x(P x \wedge \neg K x) \\
& \text { All professors are kind } \approx \text { There are no non-kind professors } \\
& \text { Other variants: } \\
& \exists x \alpha \equiv \neg \forall x \neg \alpha \\
& \neg \exists x \alpha \equiv \forall x \neg \alpha \\
& \neg \forall x \alpha \equiv \exists x \neg \alpha
\end{aligned}
$$

Equivalences II

- Distribution rules:

$$
\forall x(\alpha \wedge \beta) \equiv(\forall x \alpha \wedge \forall x \beta)
$$

All is rare and expensive $\approx A l l$ is rare and all is expensive

But:

$$
\forall x(\alpha \vee \beta) \not \equiv \quad(\forall x \alpha \vee \forall x \beta)
$$

All is either relative or absolute $\not \approx$ Either all is relative or all is absolute

$$
\begin{array}{|ll}
\exists x(\alpha \vee \beta) & \equiv(\exists x \alpha \vee \exists x \beta) \\
& \text { But: } \\
\exists x(\alpha \wedge \beta) & \equiv \equiv \quad(\exists x \alpha \wedge \exists x \beta) \\
\hline
\end{array}
$$

$$
\exists x(\alpha \rightarrow \beta) \equiv(\forall x \alpha \rightarrow \exists x \beta)
$$

Equivalences III

- Conditional distribution ($\bar{\beta}$ doesn't contain free occurrences of x)

$$
\begin{aligned}
\bar{\beta} & \equiv \forall x \bar{\beta} \\
\bar{\beta} & \equiv \exists x \bar{\beta} \\
\forall x(\alpha \vee \bar{\beta}) & \equiv(\forall x \alpha \vee \bar{\beta}) \\
\exists x(\alpha \wedge \bar{\beta}) & \equiv \exists x \alpha \wedge \bar{\beta} \\
\forall x(\alpha \rightarrow \bar{\beta}) & \equiv \exists x \alpha \rightarrow \bar{\beta}
\end{aligned}
$$

Every entity is such that if it breaks, there is noise \approx If some entity breaks,

$$
\forall x(\bar{\beta} \rightarrow \alpha) \equiv \bar{\beta} \rightarrow \forall x \alpha
$$

For all person, if there is noise, $s / h e$ is upset \approx If there is noise, every

