Formal Languages and Linguistics

Formal Languages

Pascal Amsili

Sorbonne Nouvelle, Lattice (CNRS/ENS-PSL/SN)

Cogmaster, september 2022

Sorbonne III Nouvelle III

Overview

Formal Languages

Regular Languages Definition Regular expressions

Automata Properties

Formal Grammars

Formal complexity of Natural Languages

Sorbonne III Nouvelle III

Regular expressions

It is common to use the 3 rational operations:

- union
- product
- Kleene star

to characterize certain languages...

Sorbonne III Nouvelle III

Regular expressions

It is common to use the 3 rational operations:

- union
- product
- Kleene star

to characterize certain languages...

 $(\{a\} \cup \{b\})^* \cdot \{c\} = \{c, ac, abc, bc, \dots, baabaac, \dots\}$ (simplified notation $(a|b)^*c$ — regular expressions)

Sorbonne III Nouvelle

Regular expressions

It is common to use the 3 rational operations:

- union
- product
- Kleene star

to characterize certain languages...

 $(\{a\} \cup \{b\})^* \cdot \{c\} = \{c, ac, abc, bc, \dots, baabaac, \dots\}$ (simplified notation $(a|b)^*c$ — regular expressions)

... but not all languages can be thus characterized.

Sorbonne III Nouvelle Formal Languages

Regular Languages ○○● Formal Grammars Formal complexity of Natural Languages References

Regular expressions

Def. 9 (Rational Language)

A rational language on Σ is a subset of Σ^* inductively defined thus:

- \emptyset and $\{\varepsilon\}$ are rational languages ;
- for all $a \in X$, the singleton $\{a\}$ is a rational language ;
- ▶ for all g and h rational, the sets $g \cup h$, g.h and g^* are rational languages.

Automata

Overview

Formal Languages

Regular Languages Definition Regular expression Automata

Properties

Formal Grammars

Formal complexity of Natural Languages

Sorbonne III Nouvelle III

Automata

Metaphoric definition

Sorbonne III Nouvelle III

Automata

Formal definition

Def. 10 (Finite deterministic automaton (FDA))

A finite state deterministic automaton ${\mathcal A}$ is defined by :

 $\mathcal{A} = \langle Q, \Sigma, q_0, F, \delta \rangle$

- Q is a finite set of states
- $\boldsymbol{\Sigma}$ is an alphabet
- q_0 is a distinguished state, the initial state,
- F is a subset of Q, whose members are called final/terminal states
- δ is a mapping fonction from $Q \times \Sigma$ to Q. Notation $\delta(q, a) = r$.

Sorbonne ;;; Nouvelle ;;;

Automata

Example

Let us consider the (finite) language {aa, ab, abb, acba, accb}. The following automaton recognizes this langage: $\langle Q, \Sigma, q_0, F, \delta \rangle$, avec $Q = \{1, 2, 3, 4, 5, 6, 7\}$, $\Sigma = \{a, b, c\}$, $q_0 = 1$, $F = \{3, 4\}$, and δ is thus defined:

Serbonne III Nouvelle

Recognition

Recognition is defined as the existence of a sequence of states defined in the following way. Such a sequence is called a path in the automaton.

Def. 11 (Recognition)

A word $a_1a_2...a_n$ is **recognized**/accepted by an automaton iff there exists a sequence $k_0, k_1, ..., k_n$ of states such that:

$$k_0 = q_0$$

$$k_n \in F$$

$$\forall i \in [1, n], \ \delta(k_{i-1}, a_i) = k_i$$

Sorbonne III Nouvelle III

Automata

Example

Sorbonne III Nouvelle III

Exercices

Let $\Sigma = \{a, b, c\}$. Give deterministic finite state automata that accept the following languages:

- 1. The set of words with an even length.
- 2. The set of words where the number of occurrences of *b* is divisible by 3.
- 3. The set of words ending with a b.
- 4. The set of words not ending with a b.
- 5. The set of words non empty not ending with a b.
- 6. The set of words comprising at least a b.
- 7. The set of words comprising at most a b.
- 8. The set of words comprising exactly one b.

Sorbonne ;;; Nouvelle ;;;

Automata

Answers

Sorbonne ;;;

Overview

Formal Languages

Regular Languages

Definition Regular expressions Automata Properties

Formal Grammars

Formal complexity of Natural Languages

Sorbonne III Nouvelle III

Ways of non-determinism

A word is recognized if there exists a path in the automaton. It is not excluded however that there be several paths for one word: in that case, the automaton is non deterministic. What are the sources of non determinism?

•
$$\delta(a, S_1) = \{S_2, S_3\}$$

• "spontaneous transition" = ε -transition

Sorbonne III Nouvelle III

Equivalence theorems

For any non-deterministic automaton, it is possible to design a complete deterministic automaton that recognizes the same language.

Proofs: algorithms (constructive proofs)

First "remove" ε -transitions, then "remove" multiple transitions.

Sorbonne ;;; Nouvelle ;;;

Regular languages are closed under various operations: if the languages L and L' are regular, so are:

► $L \cup L'$ (union); L.L' (product); L^* (Kleene star)

(rational operations)

Sorbonne ;;; Nouvelle ;;;

Union of regular languages: an example

Sorbonne III Nouvelle III

Rational operations

Sorbonne ;;;

Closure (2)

Regular languages are closed under various operations: if the languages L and L' are regular, so are:

• $L \cup L'$ (union); L.L' (product); L^* (Kleene star)

(rational operations)

 \rightarrow for every rational expression describing a language , there is a FSA that recognizes L

Closure (2)

Regular languages are closed under various operations: if the languages L and L' are regular, so are:

•
$$L \cup L'$$
 (union); $L.L'$ (product); L^* (Kleene star)

(rational operations)

 \rightarrow for every rational expression describing a language , there is a FSA that recognizes L \$ and vice-versa

Closure (2)

. . .

Regular languages are closed under various operations: if the languages L and L' are regular, so are:

• $L \cup L'$ (union); L.L' (product); L^* (Kleene star)

(rational operations)

 \rightarrow for every rational expression describing a language , there is a FSA that recognizes L \$ and vice-versa

• $L \cap L'$ (intersection); \overline{L} (complement)

Properties

Intersection of regular languages

Algorithmic proof Deterministic complete automata

L_1	а	b	L_2	а	b		$L_1 \cap L_2$	a	b	
$\rightarrow 1$	2	4	 $\leftrightarrow 1$	2	5	-	\rightarrow (1,1)	(2,2)	(4,5)	
2	4	3	2	5	3		(2,2)	(4,5)	(3,3)	
\leftarrow 3	3	3	3	4	5		(4,5)	(4,5)	(4,5)	
4	4	4	4	1	4		(3,3)	(3,4)	(3,5)	
			5	5	5		(3,4)	(3,1)	(3,4)	
							\leftarrow (3,1)	(3,2)	(3,4)	
							(3,2)	(3,4)	(3,3)	
							(3,5)	(3,5)	(3,5)	
								1	Sorbon Nouve	ne ; lle ;

÷

Complement of a regular language

Deterministic complete automata

Sorbonne III Nouvelle III

Take an automaton with k states.

Sorbonne III Nouvelle III

Take an automaton with k states. If the accepted language is infinite, then some words have more than k letters.

> Sorbonne III Nouvelle III

Take an automaton with k states.

If the accepted language is infinite,

then some words have more than k letters.

Therefore, at least one state has to be "gone through" several times.

Sorbonne III Nouvelle III

Take an automaton with k states.

If the accepted language is infinite,

then some words have more than k letters.

Therefore, at least one state has to be "gone through" several times. That means there is a loop on that state.

Take an automaton with k states.

If the accepted language is infinite,

then some words have more than k letters.

Therefore, at least one state has to be "gone through" several times. That means there is a loop on that state.

Then making any number of loops will end up with a word in L.

⇒ Pumping lemma

Sorbonne ;;; Nouvelle ;;;

Pumping lemma: definition

Def. 12 (Pumping Lemma)

Let L be an infinite regular language. There exists an integer k such that:

$$\begin{array}{ll} \forall x \in L, \ |x| > k, \ \exists u, v, w \text{ such that } x = uvw, \text{ with:} \\ (i) \quad |v| \ge 1 \\ (ii) \quad |uv| \le k \\ (iii) \quad \forall i \ge 0, \ uv^i w \in L \end{array}$$

Sorbonne III Nouvelle III

Pumping lemma: Illustration

Let's illustrate the lemma with a language which trivialy satisfies it: a^*bc .

Let k = 3, the work *abc* is long enough, and can be decomposed:

$$\frac{\varepsilon}{u} \frac{a}{v} \frac{b c}{w}$$

The three properties of the lemma are satisfied:

Sorbonne ;;;

Pumping lemma: Consequences

The pumping lemma is a tool to prove that a language is **not** regular.

\mathcal{L} regular	\Rightarrow	pumping lemma ($\forall i, uv^i w \in \mathcal{L}$)
pumping lemma	\Rightarrow	${\cal L}$ regular
NO pumping lemma	\Rightarrow	$\mathcal L$ NOT regular

Pumping lemma: Consequences

The pumping lemma is a tool to prove that a language is **not** regular.

$\mathcal L$ regular	\Rightarrow	pumping lemma ($\forall i, uv^i w \in \mathcal{L}$)
pumping lemma	\neq	${\cal L}$ regular
NO pumping lemma	\Rightarrow	$\mathcal L$ NOT regular

to prove that \mathcal{L} is

regular provide an automaton

not regular show that the pumping lemma does not apply

Sorbonne ;;; Nouvelle ;;;

Pumping lemma: Consequences

Def. 13 (Consequences)

Let \mathcal{A} be a k state automaton:

- 1. $L(\mathcal{A}) \neq \emptyset$ iff \mathcal{A} recognises (at least) one word u s.t. |u| < k.
- 2. L(A) is infinite *iff* A recognises (at least) one word u t.q. $k \le |u| < 2k$.

Sorbonne ;;; Nouvelle ;;;

Results: expressivity

- Any finite langage is regular
- ▶ *aⁿb^m* is regular
- ▶ *aⁿbⁿ* is not regular
- ww^R is not regular (^R : reverse word)

Sorbonne III Nouvelle III

- The "word problem" $\frac{?}{w \in L(\mathcal{A})}$ is decidable.
- $\Rightarrow\,$ A computation on an automaton always stops.

Sorbonne III Nouvelle III

- The "word problem" $\frac{?}{w \in L(\mathcal{A})}$ is decidable.
- \Rightarrow A computation on an automaton always stops.
 - The "emptiness problem" $L(\mathcal{A}) \stackrel{?}{=} \emptyset$ is decidable.
- ⇒ It's enough to test all possible words of length $\leq k$, where k is the number of states.

Sorbonne ;;; Nouvelle ;;;

- The "word problem" $\frac{?}{w \in L(\mathcal{A})}$ is decidable.
- \Rightarrow A computation on an automaton always stops.
 - The "emptiness problem" $L(A) \stackrel{?}{=} \emptyset$ is decidable.
- ⇒ It's enough to test all possible words of length $\leq k$, where k is the number of states.
 - The "finiteness problem" L(A) is *finite* is decidable.
- ⇒ Test all possible words whose length is between k and 2k. If there exists u s.t. k < |u| < 2k and $u \in L(A)$, then L(A) is infinite.

- The "word problem" $\frac{?}{w \in L(\mathcal{A})}$ is decidable.
- $\Rightarrow\,$ A computation on an automaton always stops.
 - The "emptiness problem" $L(\mathcal{A}) \stackrel{?}{=} \emptyset$ is decidable.
- ⇒ It's enough to test all possible words of length $\leq k$, where k is the number of states.
 - The "finiteness problem" L(A) is finite is decidable.
- ⇒ Test all possible words whose length is between k and 2k. If there exists u s.t. k < |u| < 2k and $u \in L(A)$, then L(A) is infinite.
- The "equivalence problem" $L(A) \stackrel{?}{=} L(A')$ is decidable.

À quoi ça sert?

Why would you want to define (formally) a language?

- to formulate a request to a search engine (mang.*)
- ▶ to associate actions to (classes of) words (e.g., transducers)
 - formal languages (math. expressions, programming languages...)
 - artificial (interface) languages
 - (subpart of) natural languages

Overview

Formal Languages

Regular Languages

Formal Grammars Definition Language classes

Formal complexity of Natural Languages

Sorbonne III Nouvelle

Formal Languages

Regular Languages
00
000
0000000
0000000000000000000000

Definition

Formal grammar

Def. 14 ((Formal) Grammar)

A formal grammar is defined by $\langle \Sigma, N, S, P \rangle$ where

- Σ is an alphabet
- N is a disjoint alphabet (non-terminal vocabulary)
- $S \in V$ is a distinguished element of N, called the *axiom*
- ► *P* is a set of « *production rules* », namely a subset of the cartesian product $(\Sigma \cup N)^* N (\Sigma \cup N)^* \times (\Sigma \cup N)^*$.

Sorbonne ;;; Nouvelle ;;;

Definition

Examples

$\langle \Sigma, N, S, P \rangle$

$\mathcal{G}_0 = \langle$

Sorbonne III Nouvelle

Definition

Examples

$$\langle \Sigma, N, S, P \rangle$$

$$\mathcal{G}_0 = \left\langle \{ \textit{joe}, \textit{sam}, \textit{sleeps} \}, \right.$$

Sorbonne ;;; Nouvelle ;;;

Definition

Examples

$$\langle \Sigma, N, S, P \rangle$$

$$\mathcal{G}_0 = \left \langle \{\textit{joe}, \textit{sam}, \textit{sleeps}\}, \{\textit{N}, \textit{V}, \textit{S}\}, \right .$$

Sorbonne III Nouvelle III

Definition

Examples

$$\langle \Sigma, N, S, P \rangle$$

$$\mathcal{G}_0 = \left\langle \{\textit{joe}, \textit{sam}, \textit{sleeps}\}, \{\textit{N}, \textit{V}, \textit{S}\}, \textit{S}, \right.$$

Sorbonne ;;; Nouvelle ;;;

Definition

Examples

$$\langle \Sigma, N, S, P \rangle$$

$$\mathcal{G}_{0} = \left\langle \{joe, sam, sleeps\}, \{N, V, S\}, S, \left\{ \begin{array}{c} (N, joe) \\ (N, sam) \\ (V, sleeps) \\ (S, N V) \end{array} \right\} \right\rangle \right\}$$

Sorbonne ;;;

Definition

Examples

$$\langle \Sigma, N, S, P \rangle$$

$$\mathcal{G}_{0} = \left\langle \{joe, sam, sleeps\}, \{N, V, S\}, S, \left\{ \begin{array}{c} N \to joe \\ N \to sam \\ V \to sleeps \\ S \to N V \end{array} \right\} \right\rangle \right\}$$

Sorbonne ;;;

Definition

Examples (cont'd)

$$\mathcal{G}_{1} = \left\langle \{jean, dort\}, \{Np, SN, SV, V, S\}, S, \left\{ \begin{array}{c} S \to SN \ SV \\ SN \to Np \\ SV \to V \\ Np \to jean \\ V \to dort \end{array} \right\} \right\rangle \right\}$$

$$\mathcal{G}_{2} = \left\langle \{(,)\}, \{S\}, S, \{S \longrightarrow \varepsilon \mid (S)S\} \right\rangle$$

Sorbonne III Nouvelle III

Definition

Notation

$$\begin{array}{rcccccc} \mathcal{G}_{3}: & E & \longrightarrow & E+E \\ & & \mid & E \times E \\ & & \mid & (E) \\ & & \mid & F \\ F & \longrightarrow & 0|1|2|3|4|5|6|7|8|9 \end{array}$$

Sorbonne ;;;

Definition

Notation

Sorbonne III Nouvelle III

Definition

Notation

 $G_4 = E \rightarrow E + T \mid T, T \rightarrow T \times F \mid F, F \rightarrow (E) \mid a$

Sorbonne III Nouvelle

Definition

Immediate Derivation

Def. 15 (Immediate derivation)

Let $\mathcal{G} = \langle X, V, S, P \rangle$ a grammar, $(f, g) \in (X \cup V)^*$ two "words", $r \in P$ a production rule, such that $r : A \longrightarrow u$ $(u \in (X \cup V)^*)$.

- f derives into g (immediate derivation) with the rule r(noted $f \xrightarrow{r} g$) iff $\exists v, w \text{ s.t. } f = vAw \text{ and } g = vuw$
- f derives into g (immediate derivation) in the grammar G (noted f → g) iff
 ∃r ∈ P s.t. f → g.

Sorbonne ;;; Nouvelle ;;;

Definition

Derivation

Def. 16 (Derivation)

$$f \xrightarrow{\mathcal{G}_*} g$$
 if $f = g$ or
 $\exists f_0, f_1, f_2, ..., f_n$ s.t. $f_0 = f$
 $f_n = g$
 $\forall i \in [1, n] : f_{i-1} \xrightarrow{\mathcal{G}} f_i$

An example with G_0 : $N \ V \ joe \ N$

> Sorbonne III Nouvelle III

Definition

Derivation

Def. 16 (Derivation)

$$f \xrightarrow{\mathcal{G}_*} g$$
 if $f = g$ or
 $\exists f_0, f_1, f_2, ..., f_n$ s.t. $f_0 = f$
 $f_n = g$
 $\forall i \in [1, n] : f_{i-1} \xrightarrow{\mathcal{G}} f_i$

An example with \mathcal{G}_0 : $N \ V \ joe \ N \longrightarrow sam \ V \ joe \ N$

> Sorbonne III Nouvelle III

Definition

Derivation

Def. 16 (Derivation)

$$f \xrightarrow{\mathcal{G}_*} g$$
 if $f = g$ or
 $\exists f_0, f_1, f_2, ..., f_n$ s.t. $f_0 = f$
 $f_n = g$
 $\forall i \in [1, n] : f_{i-1} \xrightarrow{\mathcal{G}} f_i$

An example with \mathcal{G}_0 : $N \ V \ joe \ N \longrightarrow sam \ V \ joe \ joe \ or$

> Sorbonne III Nouvelle III

Definition

Derivation

Def. 16 (Derivation)

$$f \xrightarrow{\mathcal{G}_*} g$$
 if $f = g$ or
 $\exists f_0, f_1, f_2, ..., f_n$ s.t. $f_0 = f$
 $f_n = g$
 $\forall i \in [1, n] : f_{i-1} \xrightarrow{\mathcal{G}} f_i$
An example with \mathcal{G}_0 :

$$N \ V \ joe \ N \longrightarrow sam \ V \ joe \ N \longrightarrow sam \ V \ joe \ joe \ or$$
 $sam \ V \ joe \ sam \ or$

Sorbonne ;;;

Definition

Derivation

Def. 16 (Derivation)

$$f \xrightarrow{\mathcal{G}_*} g$$
 if $f = g$ or
 $\exists f_0, f_1, f_2, ..., f_n$ s.t. $f_0 = f$
 $f_n = g$
 $\forall i \in [1, n] : f_{i-1} \xrightarrow{\mathcal{G}} f_i$
An example with \mathcal{G}_0 :

 $N \ V \ joe \ N \longrightarrow sam \ V \ joe \ N \longrightarrow sam \ V \ joe \ joe \ or$ $sam \ V \ joe \ sam \ or$ $sam \ sleeps \ joe \ N \ or$

. . .

Sorbonne III Nouvelle III

Definition

Endpoint of a derivation

$$\begin{array}{rccccccc} \mathcal{G}_{3}: & E & \longrightarrow & E+E \\ & & \mid & E \times E \\ & & \mid & (E) \\ & & \mid & F \\ F & \longrightarrow & 0|1|2|3|4|5|6|7|8|9 \end{array}$$

An example with \mathcal{G}_3 :

 $E \times E$

Sorbonne III Nouvelle III

Definition

Endpoint of a derivation

$$\begin{array}{rccccccc} \mathcal{G}_{3}: & E & \longrightarrow & E+E \\ & & \mid & E \times E \\ & & \mid & (E) \\ & & \mid & F \\ F & \longrightarrow & 0|1|2|3|4|5|6|7|8|9 \end{array}$$

An example with \mathcal{G}_3 :

 $E \times E \longrightarrow F \times E$

Sorbonne III Nouvelle III

Definition

Endpoint of a derivation

$$\begin{array}{rccccccc} \mathcal{G}_{3}: & E & \longrightarrow & E+E \\ & & \mid & E \times E \\ & & \mid & (E) \\ & & \mid & F \\ F & \longrightarrow & 0|1|2|3|4|5|6|7|8|9 \end{array}$$

An example with \mathcal{G}_3 :

 $E \times E \longrightarrow F \times E \longrightarrow 3 \times E$

Sorbonne III Nouvelle

Definition

Endpoint of a derivation

$$\begin{array}{rccccccc} \mathcal{G}_{3}: & E & \longrightarrow & E+E \\ & & \mid & E \times E \\ & & \mid & (E) \\ & & \mid & F \\ F & \longrightarrow & 0|1|2|3|4|5|6|7|8|9 \end{array}$$

An example with \mathcal{G}_3 :

 $E \times E \longrightarrow F \times E \longrightarrow 3 \times E \longrightarrow 3 \times (E)$

Sorbonne ;;; Nouvelle ;;;

Definition

Endpoint of a derivation

An example with \mathcal{G}_3 :

 $E \times E \longrightarrow F \times E \longrightarrow 3 \times E \longrightarrow 3 \times (E) \longrightarrow 3 \times (E+E)$

Sorbonne III Nouvelle

Definition

Endpoint of a derivation

$$\begin{array}{rccccccc} \mathcal{G}_{3}: & E & \longrightarrow & E+E \\ & & \mid & E \times E \\ & & \mid & (E) \\ & & \mid & F \\ F & \longrightarrow & 0|1|2|3|4|5|6|7|8|9 \end{array}$$

An example with \mathcal{G}_3 :

$$\begin{array}{c} E \times E \longrightarrow F \times E \longrightarrow 3 \times E \longrightarrow 3 \times (E) \longrightarrow 3 \times (E+E) \longrightarrow \\ 3 \times (E+F) \end{array}$$

Sorbonne III Nouvelle III

Definition

Endpoint of a derivation

$$\begin{array}{rccccccc} \mathcal{G}_{3}: & E & \longrightarrow & E+E \\ & & \mid & E \times E \\ & & \mid & (E) \\ & & \mid & F \\ F & \longrightarrow & 0|1|2|3|4|5|6|7|8|9 \end{array}$$

An example with \mathcal{G}_3 :

$$\begin{array}{c} E \times E \longrightarrow F \times E \longrightarrow 3 \times E \longrightarrow 3 \times (E) \longrightarrow 3 \times (E+E) \longrightarrow \\ 3 \times (E+F) \longrightarrow 3 \times (E+4) \end{array}$$

Sorbonne III Nouvelle

Definition

Endpoint of a derivation

An example with \mathcal{G}_3 :

$$\begin{array}{c} E \times E \longrightarrow F \times E \longrightarrow 3 \times E \longrightarrow 3 \times (E) \longrightarrow 3 \times (E+E) \longrightarrow \\ 3 \times (E+F) \longrightarrow 3 \times (E+4) \longrightarrow 3 \times (F+4) \end{array}$$

Sorbonne III Nouvelle

Definition

Endpoint of a derivation

$$\begin{array}{rccccccc} \mathcal{G}_{3}: & E & \longrightarrow & E+E \\ & & \mid & E \times E \\ & & \mid & (E) \\ & & \mid & F \\ F & \longrightarrow & 0|1|2|3|4|5|6|7|8|9 \end{array}$$

An example with \mathcal{G}_3 :

$$\begin{array}{c} E \times E \longrightarrow F \times E \longrightarrow 3 \times E \longrightarrow 3 \times (E) \longrightarrow 3 \times (E+E) \longrightarrow \\ 3 \times (E+F) \longrightarrow 3 \times (E+4) \longrightarrow 3 \times (F+4) \longrightarrow 3 \times (5+4) \end{array}$$

Sorbonne III Nouvelle

Definition

Endpoint of a derivation

An example with \mathcal{G}_3 :

$$\begin{array}{c} E \times E \longrightarrow F \times E \longrightarrow 3 \times E \longrightarrow 3 \times (E) \longrightarrow 3 \times (E+E) \longrightarrow \\ 3 \times (E+F) \longrightarrow 3 \times (E+4) \longrightarrow 3 \times (F+4) \longrightarrow 3 \times (5+4) \longrightarrow \end{array}$$

Sorbonne III Nouvelle

Definition

Engendered language

Def. 17 (Language engendered by a word) Let $f \in (\Sigma \cup N)^*$. $L_{\mathcal{G}}(f) = \{g \in X^*/f \xrightarrow{\mathcal{G}_*} g\}$

Def. 18 (Language engendered by a grammar)

The language engendered by a grammar \mathcal{G} is the set of words of Σ^* derived from the axiom.

 $L_{\mathcal{G}}=L_{\mathcal{G}}(S)$

Sorbonne III Nouvelle

Definition

Engendered language

Def. 17 (Language engendered by a word) Let $f \in (\Sigma \cup N)^*$. $L_{\mathcal{G}}(f) = \{g \in X^*/f \xrightarrow{\mathcal{G}_*} g\}$

Def. 18 (Language engendered by a grammar)

The language engendered by a grammar \mathcal{G} is the set of words of Σ^* derived from the axiom.

 $L_{\mathcal{G}}=L_{\mathcal{G}}(S)$

For instance () $\in L_{\mathcal{G}_2}$:

Sorbonne III Nouvelle III

Definition

Engendered language

Def. 17 (Language engendered by a word) Let $f \in (\Sigma \cup N)^*$. $L_{\mathcal{G}}(f) = \{g \in X^*/f \xrightarrow{\mathcal{G}_*} g\}$

Def. 18 (Language engendered by a grammar)

The language engendered by a grammar \mathcal{G} is the set of words of Σ^* derived from the axiom.

$$L_{\mathcal{G}} = L_{\mathcal{G}}(S)$$

For instance () $\in L_{\mathcal{G}_2}: S \to (S)S$

Sorbonne III Nouvelle III
Definition

Engendered language

Def. 17 (Language engendered by a word) Let $f \in (\Sigma \cup N)^*$. $L_{\mathcal{G}}(f) = \{g \in X^*/f \xrightarrow{\mathcal{G}_*} g\}$

Def. 18 (Language engendered by a grammar)

The language engendered by a grammar \mathcal{G} is the set of words of Σ^* derived from the axiom.

$$L_{\mathcal{G}} = L_{\mathcal{G}}(S)$$

For instance () $\in L_{\mathcal{G}_2}$: $S \to (S)S \to ()S$

Definition

Engendered language

Def. 17 (Language engendered by a word) Let $f \in (\Sigma \cup N)^*$. $L_{\mathcal{G}}(f) = \{g \in X^*/f \xrightarrow{\mathcal{G}_*} g\}$

Def. 18 (Language engendered by a grammar)

The language engendered by a grammar \mathcal{G} is the set of words of Σ^* derived from the axiom.

$$L_{\mathcal{G}} = L_{\mathcal{G}}(S)$$

For instance () $\in L_{\mathcal{G}_2}$: $S \to (S)S \to ()S \to ()$

Definition

Engendered language

Def. 17 (Language engendered by a word) Let $f \in (\Sigma \cup N)^*$. $L_{\mathcal{G}}(f) = \{g \in X^*/f \xrightarrow{\mathcal{G}_*} g\}$

Def. 18 (Language engendered by a grammar)

The language engendered by a grammar \mathcal{G} is the set of words of Σ^* derived from the axiom.

$$L_{\mathcal{G}} = L_{\mathcal{G}}(S)$$

For instance () $\in L_{\mathcal{G}_2}$: $S \to (S)S \to ()S \to ()$ as well as ((())), ()()(), ((()()))...

> Sorbonne ;;; Nouvelle ;;;

Definition

Engendered language

Def. 17 (Language engendered by a word) Let $f \in (\Sigma \cup N)^*$. $L_{\mathcal{G}}(f) = \{g \in X^*/f \xrightarrow{\mathcal{G}_*} g\}$

Def. 18 (Language engendered by a grammar)

The language engendered by a grammar \mathcal{G} is the set of words of Σ^* derived from the axiom.

$$L_{\mathcal{G}} = L_{\mathcal{G}}(S)$$

For instance () $\in L_{\mathcal{G}_2}$: $S \to (S)S \to ()S \to ()$ as well as ((())), ()()(), ((()()))...

but $() (\not\in L_{\mathcal{G}_2})$, even though the following is a licit derivation :

Definition

Engendered language

Def. 17 (Language engendered by a word) Let $f \in (\Sigma \cup N)^*$. $L_{\mathcal{G}}(f) = \{g \in X^*/f \xrightarrow{\mathcal{G}_*} g\}$

Def. 18 (Language engendered by a grammar)

The language engendered by a grammar \mathcal{G} is the set of words of Σ^* derived from the axiom.

$$L_{\mathcal{G}} = L_{\mathcal{G}}(S)$$

For instance () $\in L_{\mathcal{G}_2}$: $S \to (S)S \to ()S \to ()$ as well as ((())), ()()(), ((()()))...

but)()($\notin L_{\mathcal{G}_2}$, even though the following is a licit derivation :) $S(\rightarrow$

Definition

Engendered language

Def. 17 (Language engendered by a word) Let $f \in (\Sigma \cup N)^*$. $L_{\mathcal{G}}(f) = \{g \in X^*/f \xrightarrow{\mathcal{G}_*} g\}$

Def. 18 (Language engendered by a grammar)

The language engendered by a grammar \mathcal{G} is the set of words of Σ^* derived from the axiom.

$$L_{\mathcal{G}} = L_{\mathcal{G}}(S)$$

For instance () $\in L_{\mathcal{G}_2}$: $S \to (S)S \to ()S \to ()$ as well as ((())), ()()(), ((()()))... but)()(\mathcal{A} L_2 even though the following is a line

but)()($\notin L_{\mathcal{G}_2}$, even though the following is a licit derivation :) $S(\rightarrow)(S)S(\rightarrow)$

Definition

Engendered language

Def. 17 (Language engendered by a word) Let $f \in (\Sigma \cup N)^*$. $L_{\mathcal{G}}(f) = \{g \in X^*/f \xrightarrow{\mathcal{G}_*} g\}$

Def. 18 (Language engendered by a grammar)

The language engendered by a grammar \mathcal{G} is the set of words of Σ^* derived from the axiom.

$$L_{\mathcal{G}} = L_{\mathcal{G}}(S)$$

For instance $() \in L_{\mathcal{G}_2}: S \to (S)S \to ()S \to ()$ as well as ((())), ()()(), ((()())))...but $)()(\notin L_{\mathcal{G}_2}$, even though the following is a licit derivation : $)S(\to)(S)S(\to)()S(\to)$

Definition

Engendered language

Def. 17 (Language engendered by a word) Let $f \in (\Sigma \cup N)^*$. $L_{\mathcal{G}}(f) = \{g \in X^*/f \xrightarrow{\mathcal{G}_*} g\}$

Def. 18 (Language engendered by a grammar)

The language engendered by a grammar \mathcal{G} is the set of words of Σ^* derived from the axiom.

$$L_{\mathcal{G}} = L_{\mathcal{G}}(S)$$

For instance () $\in L_{\mathcal{G}_2}$: $S \to (S)S \to ()S \to ()$ as well as ((())), ()()(), ((()()))... but)()($\notin L_{\mathcal{G}_2}$, even though the following is a licit derivation :) $S(\to)(S)S(\to)()S(\to)()($

Definition

Engendered language

Def. 17 (Language engendered by a word) Let $f \in (\Sigma \cup N)^*$. $L_{\mathcal{G}}(f) = \{g \in X^*/f \xrightarrow{\mathcal{G}_*} g\}$

Def. 18 (Language engendered by a grammar)

The language engendered by a grammar \mathcal{G} is the set of words of Σ^* derived from the axiom.

$$L_{\mathcal{G}} = L_{\mathcal{G}}(S)$$

For instance $() \in L_{\mathcal{G}_2}$: $S \to (S)S \to ()S \to ()$ as well as ((())), ()()(), ((())())... but $)()(\notin L_{\mathcal{G}_2}$, even though the following is a licit derivation : $)S(\to)(S)S(\to)()S(\to)()($ for there is no way to arrive at)S(starting with S.

Definition

Example

$$G_4 = E \rightarrow E + T \mid T, T \rightarrow T \times F \mid F, F \rightarrow (E) \mid a$$

$$a + a$$
, $a + (a \times a)$, ...

Sorbonne III Nouvelle III

Proto-word

Def. 19 (Proto-word)

A proto-word (or proto-sentence) is a word on $(\Sigma \cup N)^* N(\Sigma \cup N)^*$ (that is, a word containing at least one letter of N) produced by a derivation from the axiom.

$$E \rightarrow E + T \rightarrow E + T * F \rightarrow T + T * F \rightarrow T + F * F \rightarrow T + a * F \rightarrow F + a * F \rightarrow a + a * F \rightarrow a / H / a / H / a$$

Definition

Multiple derivations

A given word may have several derivations: $E \rightarrow E + E \rightarrow F + E \rightarrow F + F \rightarrow 3 + F \rightarrow 3 + 4$

Sorbonne III Nouvelle III

Definition

Multiple derivations

A given word may have several derivations: $E \rightarrow E + E \rightarrow F + E \rightarrow F + F \rightarrow 3 + F \rightarrow 3 + 4$ $E \rightarrow E + E \rightarrow E + F \rightarrow E + 4 \rightarrow F + 4 \rightarrow 3 + 4$

Sorbonne III Nouvelle III

Definition

Multiple derivations

A given word may have several derivations:

$$E \rightarrow E + E \rightarrow F + E \rightarrow F + F \rightarrow 3 + F \rightarrow 3 + 4$$

 $E \rightarrow E + E \rightarrow E + F \rightarrow E + 4 \rightarrow F + 4 \rightarrow 3 + 4$

... but if the grammar is not ambiguous, there is only one **left** derivation:

Definition

Multiple derivations

A given word may have several derivations:

$$E \rightarrow E + E \rightarrow F + E \rightarrow F + F \rightarrow 3 + F \rightarrow 3 + 4$$

 $E \rightarrow E + E \rightarrow E + F \rightarrow E + 4 \rightarrow F + 4 \rightarrow 3 + 4$

... but if the grammar is not ambiguous, there is only one **left** derivation:

 $\underline{E} \rightarrow \underline{E} + E \rightarrow \underline{F} + E \rightarrow 3 + \underline{E} \rightarrow 3 + \underline{F} \rightarrow 3 + 4$

Definition

Multiple derivations

A given word may have several derivations:

$$E \rightarrow E + E \rightarrow F + E \rightarrow F + F \rightarrow 3 + F \rightarrow 3 + 4$$

 $E \rightarrow E + E \rightarrow E + F \rightarrow E + 4 \rightarrow F + 4 \rightarrow 3 + 4$

... but if the grammar is not ambiguous, there is only one **left** derivation:

 $\underline{E} \rightarrow \underline{E} + E \rightarrow \underline{F} + E \rightarrow 3 + \underline{E} \rightarrow 3 + \underline{F} \rightarrow 3 + 4$

parsing: trying to find the/a left derivation (resp. right)

Derivation tree

For context-free languages, there is a way to represent the set of equivalent derivations, via a derivation tree which shows all the derivation independantly of their order.

Structural analysis

Syntactic trees are precious to give access to the semantics

Sorbonne III Nouvelle III

Ambiguity

When a grammar can assign more than one derivation tree to a word $w \in L(G)$ (or more than one left derivation), the grammar is *ambiguous*.

For instance, \mathcal{G}_3 is ambiguous, since it can assign the two following trees to $1+2\times 3$:

71 / 115

Sorbonne

Definition

About ambiguity

- Ambiguity is not desirable for the semantics
- Useful artificial languages are rarely ambiguous
- There are context-free languages that are intrinsequely ambiguous (3)
- Natural languages are notoriously ambiguous...

$$(3) \qquad \{a^n b a^m b a^p b a^q | (n \geqslant q \land m \geqslant p) \lor (n \geqslant m \land p \geqslant q) \}$$

Sorbonne ;;; Nouvelle ;;;

Definition

Comparison of grammars

- different languages generated \Rightarrow different grammars
- **>** same language generated by \mathcal{G} and \mathcal{G}' :

 \Rightarrow same weak generative power

same language generated by G and G', and same structural decomposition :

 \Rightarrow same strong generative power

Language classes

Overview

Formal Languages

Regular Languages

Formal Grammars Definition Language classes

Formal complexity of Natural Languages

Sorbonne III Nouvelle III

Language classes

Principle

Define language families on the basis of properties of the grammars that generate them :

- 1. Four classes are defined, they are included one in another
- 2. A language is of type k if it can be recognized by a type k grammar (and thus, by definition, by a type k 1 grammar); and cannot be recognized by a grammar of type k + 1.

Sorbonne ;;; Nouvelle ;;;

Language classes

Chomsky's hierarchy

- type 0 No restriction on $P \subset (X \cup V)^* V(X \cup V)^* \times (X \cup V)^*.$
- type 1 (context-sensitive grammars) All rules of P are of the shape (u_1Su_2, u_1mu_2) , where u_1 and $u_2 \in (X \cup V)^*$, $S \in V$ and $m \in (X \cup V)^+$.
- type 2 (*context-free* grammar) All rules of P are of the shape (S, m), where $S \in V$ and $m \in (X \cup V)^*$.
- type 3 (regular grammars) All rules of P are of the shape (S, m), where $S \in V$ and $m \in X.V \cup X \cup \{\varepsilon\}$.

Sorbonne ;;; Nouvelle ;;;

Language classes

Examples

type 3: $S \rightarrow aS \mid aB \mid bB \mid cA$ $B \rightarrow bB \mid b$ $A \rightarrow cS \mid bB$

> Sorbonne III Nouvelle

Language classes

Examples

type 3: $S \rightarrow aS \mid aB \mid bB \mid cA$ $B \rightarrow bB \mid b$ $A \rightarrow cS \mid bB$

type 2: $E \rightarrow E + T \mid T, T \rightarrow T \times F \mid F, F \rightarrow (E) \mid a$

Formal Languages R

Regular	Languages
00	
000	
000000	00

Language classes

Example 1 type 0

Type 0: $S \rightarrow SABC \quad AC \rightarrow CA \quad A \rightarrow a$ $S \rightarrow \varepsilon \qquad CA \rightarrow AC \quad B \rightarrow b$ $AB \rightarrow BA \qquad BC \rightarrow CB \quad C \rightarrow c$ $BA \rightarrow AB \qquad CB \rightarrow BC$ generated language :

Sorbonne ;;;

Language classes

Example 1 type 0

Type 0: $S \rightarrow SABC \quad AC \rightarrow CA \quad A \rightarrow a$ $S \rightarrow \varepsilon \qquad CA \rightarrow AC \quad B \rightarrow b$ $AB \rightarrow BA \qquad BC \rightarrow CB \quad C \rightarrow c$ $BA \rightarrow AB \qquad CB \rightarrow BC$

generated language : words with an equal number of a, b, and c.

Sorbonne ;;; Nouvelle ;;; Formal Languages

Regular	Languages
00	
ÕÕO	
000000	000
000000	00000000000

Language classes

Example 2: type 0

Type 0:
$$S \rightarrow \$S'\$$$
 $Aa \rightarrow aA$ $\$a \rightarrow a\$$
 $S' \rightarrow aAS'$ $Ab \rightarrow bA$ $\$b \rightarrow b\$$
 $S' \rightarrow bBS'$ $Ba \rightarrow aB$ $A\$ \rightarrow \a
 $S' \rightarrow \varepsilon$ $Bb \rightarrow bB$ $B\$ \rightarrow \b
 $\$\$ \rightarrow \#$

Sorbonne III Nouvelle III

Language classes

Formal Languages

Regul	ar L	angi	uage	2S
00				
ÕÕO				
0000	000	0		
0000	000	000	000	000

Formal Grammars Formal complexity of Natural Languages References

81 / 115

Language classes

Language families

Language classes

Remarks

- There are others ways to classify languages,
 - either on other properties of the grammars;
 - or on other properties of the languages
- Nested structures are preferred, but it's not necessary
- When classes are nested, it is expected to have a growth of complexity/expressive power

Sorbonne ;;; Nouvelle ;;;