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General introduction

1. Mathematicians (incl. Chomsky) have formalized the notion of
language oversimplification ?

maybe...

2. It buys us:
2.1 Tools to think about theoretical issues about language/s

(expressiveness, complexity, comparability...)

2.2 Tools to manipulate concretely language (e.g. with computers)

2.3 A research programme:

• Represent the syntax of natural language in a fully
unambiguously specified way

Now let’s get familiar with the mathematical notion of language
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Basic concepts

Alphabet, word

Def. 1 (Alphabet)

An alphabet ⌃ is a finite set of symbols (letters).
The size of the alphabet is the cardinal of the set.

Def. 2 (Word)

A word on the alphabet ⌃ is a finite sequence of letters from ⌃.
Formally, let [p] = (1, 2, 3, 4, ..., p) (ordered integer sequence).
Then a word is a mapping

u : [p] �! ⌃

p, the length of u, is noted |u|.
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Basic concepts

Examples II

Alphabet {0,1,2,3,4,5,6,7,8,9, · }
Words 235 · 29

007 · 12
·1 · 1 · 00 · ·
3 · 1415962 . . . (⇡)
. . .

Alphabet {a, woman, loves, man }
Words a

a woman loves a woman
man man a loves woman loves a
. . .
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Basic concepts

Monoid

Def. 3 (⌃⇤
)

Let ⌃ be an alphabet.
The set of all the words that can be formed with any number of
letters from ⌃ is noted ⌃⇤

⌃⇤ includes a word with no letter, noted "

Example: ⌃ = {a, b, c}
⌃⇤ = {", a, b, c , aa, ab, ac , ba, . . . , bbb, . . .}

N.B.: ⌃⇤ is always infinite, except. . .

if ⌃ = ;. Then ⌃⇤ = {"}.
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Basic concepts

Structure of ⌃⇤

Let k be the size of the alphabet k = |⌃|.

Then ⌃⇤ contains : k0 = 1 word(s) of 0 letters (")
k1 = k word(s) of 1 letters
k2 word(s) of 2 letters
. . .
kn words of n letters, 8n � 0
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Basic concepts

Representation of ⌃⇤

⌃ = {a, b, c}
"
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I Words can be enumerated according to different orders
I ⌃⇤ is a countable set
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Basic concepts

Concatenation
⌃⇤ can be equipped with a binary operation: concatenation

Def. 4 (Concatenation)

Let [p] u�! ⌃, [q] w�! ⌃. The concatenation of u and w , noted
uw (u.w) is thus defined:

uw : [p + q] �! ⌃

uwi =

⇢
ui for i 2 [1, p]
wi�p for i 2 [p + 1, p + q]

Example : u bacba
v cca
uv bacbacca
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Basic concepts

Factor

Def. 5 (Factor)

A factor w of u is a subset of adjascent letters in u.
–w is a factor of u , 9u1, u2 s.t. u = u1wu2
–w is a left factor (prefix) of u , 9u2 s.t. u = wu2
–w is a right factor (suffix) of u , 9u1 s.t. u = u1w

Def. 6 (Factorization)

We call factorization the decomposition of a word into factors.
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Basic concepts

Role of concatenation
1. Words have been defined on ⌃.

If one takes two such words, it’s always possible to form a new
word by concatenating them.

2. Any word can be factorised in many different ways:
a b a c c a b

3. Since all letters of ⌃ form a word of length 1
(this set of words is called the base),

4. any word of ⌃⇤ can be seen as a (unique) sequence of
concatenations of length 1 words :
a b a c c a b
((((((ab)a)c)c)a)b)
((((((a.b).a).c).c).a).b)
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Basic concepts

Properties of concatenation

1. Concatenation is non commutative
2. Concatenation is associative
3. Concatenation has an identity (neutral) element: "

1. uv .w 6= w .uv

2. (u.v).w = u.(v .w)

3. u." = ".u = u
Notation : a.a.a = a3
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Definition

Language

Def. 7 (Formal Language)

Let ⌃ be an alphabet.
A language on ⌃ is a set of words on ⌃.

or, equivalently,
A language on ⌃ is a subset of ⌃⇤
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Definition

Examples I

Let ⌃ = {a, b, c}.

L1 = {aa, ab, bac} finite language

L2 = {a, aa, aaa, aaaa . . .}
or L2 = {ai / i � 1} infinite language

L3 = {"} finite language,

reduced to a singleton

6=
L4 = ; “empty” language

L5 = ⌃⇤
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Definition

Examples II

Let ⌃ = {a, man, loves, woman}.

L = { a man loves a woman, a woman loves a man }

Let ⌃0 = {a, man, who, saw, fell}.

L0 =

8
>><

>>:

a man fell,
a man who saw a man fell,
a man who saw a man who saw a man fell,
. . .

9
>>=

>>;
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Definition

Set operations

Since a language is a set, usual set operations can be defined:
I union
I intersection
I set difference

) One may describe a (complex) language as the result of set
operations on (simpler) languages:
{a2k / k > 1} = {a, aa, aaa, aaaa, . . .} \ {ww / w 2 ⌃⇤}
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Definition

Additional operations

Def. 8 (product operation on languages)

One can define the language product and its closure the Kleene
star operation:
I The product of languages is thus defined:

L1.L2 = {uv / u 2 L1 & v 2 L2}

Notation:
k timesz }| {

L.L.L . . . L = Lk ; L0 = {"}
I The Kleene star of a language is thus defined:

L⇤ =
S

n>0 L
n
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Are NL context-sensitive?
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Are NL context-sensitive?
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