
Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Formal Languages and Linguistics

Pascal Amsili

Sorbonne Nouvelle, Lattice (CNRS/ENS-PSL/SN)

Cogmaster, september 2022

1 / 108

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

General introduction

1. Mathematicians (incl. Chomsky) have formalized the notion of
language oversimplification ?

maybe...

2. It buys us:
2.1 Tools to think about theoretical issues about language/s

(expressiveness, complexity, comparability...)

2.2 Tools to manipulate concretely language (e.g. with computers)

2.3 A research programme:

• Represent the syntax of natural language in a fully
unambiguously specified way

Now let’s get familiar with the mathematical notion of language

2 / 108

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Basic concepts

Overview

Formal Languages
Basic concepts
Definition
Questions

Regular Languages

Formal Grammars

Formal complexity of Natural Languages

3 / 108

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Basic concepts

Alphabet, word

Def. 1 (Alphabet)

An alphabet ⌃ is a finite set of symbols (letters).
The size of the alphabet is the cardinal of the set.

Def. 2 (Word)

A word on the alphabet ⌃ is a finite sequence of letters from ⌃.
Formally, let [p] = (1, 2, 3, 4, ..., p) (ordered integer sequence).
Then a word is a mapping

u : [p] �! ⌃

p, the length of u, is noted |u|.

4 / 108

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Basic concepts

Examples I
Alphabet { , }
Words

. . .

Formal Languages
Formal Grammars

Regular Languages
Formal complexity of Natural Languages

References

Basic concepts
Definition
Problem

Examples I
Alphabet { , }
Words

. . .
Alphabet { , , , , , . . . }
Words

. . .

5 / 111
5 / 108

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Basic concepts

Examples II

Alphabet {0,1,2,3,4,5,6,7,8,9, · }
Words 235 · 29

007 · 12
·1 · 1 · 00 · ·
3 · 1415962 . . . (⇡)
. . .

Alphabet {a, woman, loves, man }
Words a

a woman loves a woman
man man a loves woman loves a
. . .

6 / 108

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Basic concepts

Monoid

Def. 3 (⌃⇤
)

Let ⌃ be an alphabet.
The set of all the words that can be formed with any number of
letters from ⌃ is noted ⌃⇤

⌃⇤ includes a word with no letter, noted "

Example: ⌃ = {a, b, c}
⌃⇤ = {", a, b, c , aa, ab, ac , ba, . . . , bbb, . . .}

N.B.: ⌃⇤ is always infinite, except. . .

if ⌃ = ;. Then ⌃⇤ = {"}.

7 / 108

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Basic concepts

Monoid

Def. 3 (⌃⇤
)

Let ⌃ be an alphabet.
The set of all the words that can be formed with any number of
letters from ⌃ is noted ⌃⇤

⌃⇤ includes a word with no letter, noted "

Example: ⌃ = {a, b, c}
⌃⇤ = {", a, b, c , aa, ab, ac , ba, . . . , bbb, . . .}

N.B.: ⌃⇤ is always infinite, except. . .
if ⌃ = ;. Then ⌃⇤ = {"}.

7 / 108

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Basic concepts

Structure of ⌃⇤

Let k be the size of the alphabet k = |⌃|.

Then ⌃⇤ contains : k0 = 1 word(s) of 0 letters (")
k1 = k word(s) of 1 letters
k2 word(s) of 2 letters
. . .
kn words of n letters, 8n � 0

8 / 108

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Basic concepts

Representation of ⌃⇤

⌃ = {a, b, c}
"

�
�
�
�
�
�
�

H
H

H
H

H
H

H

a

�
��

H
HH

aa

�
�
�

H
H

H

aaa aab aac ...

ab ac

b

�
��

H
HH

ba bb bc

c

�
��

H
HH

ca cb cc

I Words can be enumerated according to different orders
I ⌃⇤ is a countable set

9 / 108

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Basic concepts

Concatenation
⌃⇤ can be equipped with a binary operation: concatenation

Def. 4 (Concatenation)

Let [p] u�! ⌃, [q] w�! ⌃. The concatenation of u and w , noted
uw (u.w) is thus defined:

uw : [p + q] �! ⌃

uwi =

⇢
ui for i 2 [1, p]
wi�p for i 2 [p + 1, p + q]

Example : u bacba
v cca
uv bacbacca

10 / 108

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Basic concepts

Concatenation
⌃⇤ can be equipped with a binary operation: concatenation

Def. 4 (Concatenation)

Let [p] u�! ⌃, [q] w�! ⌃. The concatenation of u and w , noted
uw (u.w) is thus defined:

uw : [p + q] �! ⌃

uwi =

⇢
ui for i 2 [1, p]
wi�p for i 2 [p + 1, p + q]

Example : u bacba
v cca

uv bacbacca

10 / 108

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Basic concepts

Concatenation
⌃⇤ can be equipped with a binary operation: concatenation

Def. 4 (Concatenation)

Let [p] u�! ⌃, [q] w�! ⌃. The concatenation of u and w , noted
uw (u.w) is thus defined:

uw : [p + q] �! ⌃

uwi =

⇢
ui for i 2 [1, p]
wi�p for i 2 [p + 1, p + q]

Example : u bacba
v cca
uv bacbacca

10 / 108

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Basic concepts

Factor

Def. 5 (Factor)

A factor w of u is a subset of adjascent letters in u.
–w is a factor of u , 9u1, u2 s.t. u = u1wu2
–w is a left factor (prefix) of u , 9u2 s.t. u = wu2
–w is a right factor (suffix) of u , 9u1 s.t. u = u1w

Def. 6 (Factorization)

We call factorization the decomposition of a word into factors.

11 / 108

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Basic concepts

Role of concatenation
1. Words have been defined on ⌃.

If one takes two such words, it’s always possible to form a new
word by concatenating them.

2. Any word can be factorised in many different ways:
a b a c c a b

3. Since all letters of ⌃ form a word of length 1
(this set of words is called the base),

4. any word of ⌃⇤ can be seen as a (unique) sequence of
concatenations of length 1 words :
a b a c c a b
((((((ab)a)c)c)a)b)
((((((a.b).a).c).c).a).b)

12 / 108

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Basic concepts

Role of concatenation
1. Words have been defined on ⌃.

If one takes two such words, it’s always possible to form a new
word by concatenating them.

2. Any word can be factorised in many different ways:
a b a c c a b
(a b a)(c c a b)

3. Since all letters of ⌃ form a word of length 1
(this set of words is called the base),

4. any word of ⌃⇤ can be seen as a (unique) sequence of
concatenations of length 1 words :
a b a c c a b
((((((ab)a)c)c)a)b)
((((((a.b).a).c).c).a).b)

12 / 108

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Basic concepts

Role of concatenation
1. Words have been defined on ⌃.

If one takes two such words, it’s always possible to form a new
word by concatenating them.

2. Any word can be factorised in many different ways:
a b a c c a b
(a b)(a c c)(a b)

3. Since all letters of ⌃ form a word of length 1
(this set of words is called the base),

4. any word of ⌃⇤ can be seen as a (unique) sequence of
concatenations of length 1 words :
a b a c c a b
((((((ab)a)c)c)a)b)
((((((a.b).a).c).c).a).b)

12 / 108

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Basic concepts

Role of concatenation
1. Words have been defined on ⌃.

If one takes two such words, it’s always possible to form a new
word by concatenating them.

2. Any word can be factorised in many different ways:
a b a c c a b
(a b a c c)(a b)

3. Since all letters of ⌃ form a word of length 1
(this set of words is called the base),

4. any word of ⌃⇤ can be seen as a (unique) sequence of
concatenations of length 1 words :
a b a c c a b
((((((ab)a)c)c)a)b)
((((((a.b).a).c).c).a).b)

12 / 108

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Basic concepts

Role of concatenation
1. Words have been defined on ⌃.

If one takes two such words, it’s always possible to form a new
word by concatenating them.

2. Any word can be factorised in many different ways:
a b a c c a b
(a)(b)(a)(c)(c)(a)(b)

3. Since all letters of ⌃ form a word of length 1
(this set of words is called the base),

4. any word of ⌃⇤ can be seen as a (unique) sequence of
concatenations of length 1 words :
a b a c c a b
((((((ab)a)c)c)a)b)
((((((a.b).a).c).c).a).b)

12 / 108

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Basic concepts

Role of concatenation
1. Words have been defined on ⌃.

If one takes two such words, it’s always possible to form a new
word by concatenating them.

2. Any word can be factorised in many different ways:
a b a c c a b
(a)(b)(a)(c)(c)(a)(b)

3. Since all letters of ⌃ form a word of length 1
(this set of words is called the base),

4. any word of ⌃⇤ can be seen as a (unique) sequence of
concatenations of length 1 words :
a b a c c a b
((((((ab)a)c)c)a)b)
((((((a.b).a).c).c).a).b)

12 / 108

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Basic concepts

Properties of concatenation

1. Concatenation is non commutative
2. Concatenation is associative
3. Concatenation has an identity (neutral) element: "

1. uv .w 6= w .uv

2. (u.v).w = u.(v .w)

3. u." = ".u = u
Notation : a.a.a = a3

13 / 108

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Overview

Formal Languages
Basic concepts
Definition
Questions

Regular Languages

Formal Grammars

Formal complexity of Natural Languages

14 / 108

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Language

Def. 7 (Formal Language)

Let ⌃ be an alphabet.
A language on ⌃ is a set of words on ⌃.

or, equivalently,
A language on ⌃ is a subset of ⌃⇤

15 / 108

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Language

Def. 7 (Formal Language)

Let ⌃ be an alphabet.
A language on ⌃ is a set of words on ⌃.
or, equivalently,
A language on ⌃ is a subset of ⌃⇤

15 / 108

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Examples I

Let ⌃ = {a, b, c}.

L1 = {aa, ab, bac} finite language

L2 = {a, aa, aaa, aaaa . . .}
or L2 = {ai / i � 1} infinite language

L3 = {"} finite language,

reduced to a singleton

6=
L4 = ; “empty” language

L5 = ⌃⇤

16 / 108

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Examples I

Let ⌃ = {a, b, c}.

L1 = {aa, ab, bac} finite language

L2 = {a, aa, aaa, aaaa . . .}
or L2 = {ai / i � 1} infinite language

L3 = {"} finite language,

reduced to a singleton

6=
L4 = ; “empty” language

L5 = ⌃⇤

16 / 108

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Examples I

Let ⌃ = {a, b, c}.

L1 = {aa, ab, bac} finite language

L2 = {a, aa, aaa, aaaa . . .}

or L2 = {ai / i � 1} infinite language

L3 = {"} finite language,

reduced to a singleton

6=
L4 = ; “empty” language

L5 = ⌃⇤

16 / 108

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Examples I

Let ⌃ = {a, b, c}.

L1 = {aa, ab, bac} finite language

L2 = {a, aa, aaa, aaaa . . .}
or L2 = {ai / i � 1} infinite language

L3 = {"} finite language,

reduced to a singleton

6=
L4 = ; “empty” language

L5 = ⌃⇤

16 / 108

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Examples I

Let ⌃ = {a, b, c}.

L1 = {aa, ab, bac} finite language

L2 = {a, aa, aaa, aaaa . . .}
or L2 = {ai / i � 1} infinite language

L3 = {"} finite language,

reduced to a singleton

6=
L4 = ; “empty” language

L5 = ⌃⇤

16 / 108

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Examples I

Let ⌃ = {a, b, c}.

L1 = {aa, ab, bac} finite language

L2 = {a, aa, aaa, aaaa . . .}
or L2 = {ai / i � 1} infinite language

L3 = {"} finite language,

reduced to a singleton

6=

L4 = ; “empty” language

L5 = ⌃⇤

16 / 108

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Examples I

Let ⌃ = {a, b, c}.

L1 = {aa, ab, bac} finite language

L2 = {a, aa, aaa, aaaa . . .}
or L2 = {ai / i � 1} infinite language

L3 = {"} finite language,

reduced to a singleton

6=
L4 = ; “empty” language

L5 = ⌃⇤

16 / 108

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Examples I

Let ⌃ = {a, b, c}.

L1 = {aa, ab, bac} finite language

L2 = {a, aa, aaa, aaaa . . .}
or L2 = {ai / i � 1} infinite language

L3 = {"} finite language,

reduced to a singleton

6=
L4 = ; “empty” language

L5 = ⌃⇤

16 / 108

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Examples II

Let ⌃ = {a, man, loves, woman}.

L = { a man loves a woman, a woman loves a man }

Let ⌃0 = {a, man, who, saw, fell}.

L0 =

8
>><

>>:

a man fell,
a man who saw a man fell,
a man who saw a man who saw a man fell,
. . .

9
>>=

>>;

17 / 108

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Examples II

Let ⌃ = {a, man, loves, woman}.

L = { a man loves a woman, a woman loves a man }

Let ⌃0 = {a, man, who, saw, fell}.

L0 =

8
>><

>>:

a man fell,
a man who saw a man fell,
a man who saw a man who saw a man fell,
. . .

9
>>=

>>;

17 / 108

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Examples II

Let ⌃ = {a, man, loves, woman}.

L = { a man loves a woman, a woman loves a man }

Let ⌃0 = {a, man, who, saw, fell}.

L0 =

8
>><

>>:

a man fell,
a man who saw a man fell,
a man who saw a man who saw a man fell,
. . .

9
>>=

>>;

17 / 108

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Examples II

Let ⌃ = {a, man, loves, woman}.

L = { a man loves a woman, a woman loves a man }

Let ⌃0 = {a, man, who, saw, fell}.

L0 =

8
>><

>>:

a man fell,
a man who saw a man fell,
a man who saw a man who saw a man fell,
. . .

9
>>=

>>;

17 / 108

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Set operations

Since a language is a set, usual set operations can be defined:
I union
I intersection
I set difference

) One may describe a (complex) language as the result of set
operations on (simpler) languages:
{a2k / k > 1} = {a, aa, aaa, aaaa, . . .} \ {ww / w 2 ⌃⇤}

18 / 108

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Set operations

Since a language is a set, usual set operations can be defined:
I union
I intersection
I set difference

) One may describe a (complex) language as the result of set
operations on (simpler) languages:
{a2k / k > 1} = {a, aa, aaa, aaaa, . . .} \ {ww / w 2 ⌃⇤}

18 / 108

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Definition

Additional operations

Def. 8 (product operation on languages)

One can define the language product and its closure the Kleene
star operation:
I The product of languages is thus defined:

L1.L2 = {uv / u 2 L1 & v 2 L2}

Notation:
k timesz }| {

L.L.L . . . L = Lk ; L0 = {"}
I The Kleene star of a language is thus defined:

L⇤ =
S

n>0 L
n

19 / 108

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Are NL context-sensitive?

References I
Bar-Hillel, Yehoshua, Perles, Micha, & Shamir, Eliahu. 1961. On formal properties of simple phrase

structure grammars. STUF-Language Typology and Universals, 14(1-4), 143–172.

Chomsky, Noam. 1957. Syntactic Structures. Den Haag: Mouton & Co.

Chomsky, Noam. 1995. The Minimalist Program. Vol. 28. Cambridge, Mass.: MIT Press.

Gazdar, Gerald, & Pullum, Geoffrey K. 1985 (May). Computationally Relevant Properties of Natural
Languages and Their Grammars. Tech. rept. Center for the Study of Language and Information,
Leland Stanford Junior University.

Gibson, Edward, & Thomas, James. 1997. The Complexity of Nested Structures in English: Evidence
for the Syntactic Prediction Locality Theory of Linguistic Complexity. Unpublished manuscript,
Massachusetts Institute of Technology.

Joshi, Aravind K. 1985. Tree Adjoining Grammars: How Much Context-Sensitivity is Required to
Provide Reasonable Structural Descriptions? Tech. rept. Department of Computer and Information
Science, University of Pennsylvania.

Langendoen, D Terence, & Postal, Paul Martin. 1984. The vastness of natural languages. Basil
Blackwell Oxford.

Mannell, Robert. 1999. Infinite number of sentences. part of a set of class notes on the Internet.
http://clas.mq.edu.au/speech/infinite_sentences/.

Schieber, Stuart M. 1985. Evidence against the Context-Freeness of Natural Language. Linguistics and
Philosophy, 8(3), 333–343.

Stabler, Edward P. 2011. Computational perspectives on minimalism. Oxford handbook of linguistic
minimalism, 617–643.

107 / 108

http://clas.mq.edu.au/speech/infinite_sentences/

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Are NL context-sensitive?

References II

Steedman, Mark, et al. . 2012 (June). Combinatory Categorial Grammars for Robust Natural Language
Processing. Slides for NASSLLI course
http://homepages.inf.ed.ac.uk/steedman/papers/ccg/nasslli12.pdf.

Vijay-Shanker, K., & Weir, David J. 1994. The Equivalence of Four Extensions of Context–Free
Grammars. Mathematical Systems Theory, 27, 511–546.

108 / 108

http://homepages.inf.ed.ac.uk/steedman/papers/ccg/nasslli12.pdf

	Formal Languages
	Basic concepts

	Regular Languages
	Formal Grammars
	Formal complexity of Natural Languages
	References

