Formal Languages and Linguistics

Pascal Amsili

Sorbonne Nouvelle, Lattice (CNRS/ENS-PSL/SN)

Cogmaster, september 2022

General introduction

1. Mathematicians (incl. Chomsky) have formalized the notion of language oversimplification ? maybe...
2. It buys us:
2.1 Tools to think about theoretical issues about language/s (expressiveness, complexity, comparability...)
2.2 Tools to manipulate concretely language (e.g. with computers)
2.3 A research programme:

- Represent the syntax of natural language in a fully unambiguously specified way

Now let's get familiar with the mathematical notion of language

Overview

Formal Languages
Basic concepts
Definition
Questions

Regular Languages

Formal Grammars

Formal complexity of Natural Languages

Alphabet, word

Def. 1 (Alphabet)
An alphabet Σ is a finite set of symbols (letters).
The size of the alphabet is the cardinal of the set.
Def. 2 (Word)
A word on the alphabet Σ is a finite sequence of letters from Σ.
Formally, let $[p]=(1,2,3,4, \ldots, p)$ (ordered integer sequence).
Then a word is a mapping

$$
u:[p] \longrightarrow \Sigma
$$

p, the length of u, is noted $|u|$.

Examples I Alphabet $\{\boldsymbol{\bullet}, \boldsymbol{-}\}$
Words

Alphabet \{._ , , _•-• , _•• , , ... \}
Words -•• -ーー •••

Examples II

Alphabet $\quad\{0,1,2,3,4,5,6,7,8,9, \cdot\}$
Words $235 \cdot 29$
$007 \cdot 12$
.1.1.00..
3. $1415962 \ldots(\pi)$

Alphabet $\{\mathrm{a}$, woman, loves, man \} Words a
a woman loves a woman man man a loves woman loves a

Monoid

Def. 3 (Σ^{*})
Let Σ be an alphabet.
The set of all the words that can be formed with any number of letters from Σ is noted Σ^{*}
\sum^{*} includes a word with no letter, noted ε
Example: $\quad \Sigma=\{a, b, c\}$
$\Sigma^{*}=\{\varepsilon, a, b, c, a a, a b, a c, b a, \ldots, b b b, \ldots\}$
N.B.: Σ^{*} is always infinite, except...

Monoid

Def. 3 (Σ^{*})

Let Σ be an alphabet.
The set of all the words that can be formed with any number of letters from Σ is noted Σ^{*}
\sum^{*} includes a word with no letter, noted ε
Example: $\quad \Sigma=\{a, b, c\}$
$\Sigma^{*}=\{\varepsilon, a, b, c, a a, a b, a c, b a, \ldots, b b b, \ldots\}$
N.B.: Σ^{*} is always infinite, except...

$$
\text { if } \Sigma=\emptyset \text {. Then } \Sigma^{*}=\{\varepsilon\} .
$$

Structure of \sum^{*}

Let k be the size of the alphabet $k=|\Sigma|$.

Then Σ^{*} contains : $k^{0}=1 \quad$ word(s) of 0 letters (ε) $k^{1}=k \quad \operatorname{word}(\mathrm{~s})$ of 1 letters $k^{2} \quad$ word(s) of 2 letters
$k^{n} \quad$ words of n letters, $\forall n \geq 0$

Representation of Σ^{*}

$$
\Sigma=\{a, b, c\}
$$

- Words can be enumerated according to different orders
- Σ^{*} is a countable set

Concatenation

Σ^{*} can be equipped with a binary operation: concatenation
Def. 4 (Concatenation)
Let $[p] \xrightarrow{u} \Sigma,[q] \xrightarrow{w} \Sigma$. The concatenation of u and w, noted uw (u.w) is thus defined:

$$
\begin{array}{rll}
u w: & {[p+q] \longrightarrow \Sigma} & \\
& u w_{i}=\left\{\begin{array}{lll}
u_{i} & \text { for } & i \in[1, p] \\
w_{i-p} & \text { for } & i \in[p+1, p+q]
\end{array}\right.
\end{array}
$$

Concatenation

Σ^{*} can be equipped with a binary operation: concatenation
Def. 4 (Concatenation)
Let $[p] \xrightarrow{u} \Sigma,[q] \xrightarrow{w} \Sigma$. The concatenation of u and w, noted uw (u.w) is thus defined:

$$
\begin{array}{lll}
u w: & {[p+q] \longrightarrow \Sigma} & \\
& u w_{i}=\left\{\begin{array}{lll}
u_{i} & \text { for } & i \in[1, p] \\
w_{i-p} & \text { for } & i \in[p+1, p+q]
\end{array}\right.
\end{array}
$$

Example: u bacba
v cca

Concatenation

Σ^{*} can be equipped with a binary operation: concatenation
Def. 4 (Concatenation)
Let $[p] \xrightarrow{u} \Sigma,[q] \xrightarrow{w} \Sigma$. The concatenation of u and w, noted uw (u.w) is thus defined:

$$
\begin{array}{rll}
u w: & {[p+q] \longrightarrow \Sigma} & \\
& u w_{i}=\left\{\begin{array}{lll}
u_{i} & \text { for } & i \in[1, p] \\
w_{i-p} & \text { for } & i \in[p+1, p+q]
\end{array}\right.
\end{array}
$$

Example: u bacba
v cca
uv bacbacca

Def. 5 (Factor)

A factor w of u is a subset of adjascent letters in u.
$-w$ is a factor of u
$-w$ is a left factor (prefix) of $u \Leftrightarrow \exists u_{2}$ s.t. $u=w u_{2}$
$-w$ is a right factor (suffix) of $u \Leftrightarrow \exists u_{1}$ s.t. $u=u_{1} w$

Def. 6 (Factorization)
We call factorization the decomposition of a word into factors.

Role of concatenation

1. Words have been defined on Σ.

If one takes two such words, it's always possible to form a new word by concatenating them.
2. Any word can be factorised in many different ways: $a b a c c a b$

Role of concatenation

1. Words have been defined on Σ.

If one takes two such words, it's always possible to form a new word by concatenating them.
2. Any word can be factorised in many different ways: $a b a c c a b$ $(a b a)(\subset c a b)$

```
Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

\section*{Role of concatenation}
1. Words have been defined on \(\Sigma\).

If one takes two such words, it's always possible to form a new word by concatenating them.
2. Any word can be factorised in many different ways: \(a b a c c a b\) \((a b)(\operatorname{acc})(b)\)

\section*{Role of concatenation}
1. Words have been defined on \(\Sigma\).

If one takes two such words, it's always possible to form a new word by concatenating them.
2. Any word can be factorised in many different ways: \(a b a c c a b\) \(\left.(a b a c c))^{6}\right)\)

\section*{Role of concatenation}
1. Words have been defined on \(\Sigma\).

If one takes two such words, it's always possible to form a new word by concatenating them.
2. Any word can be factorised in many different ways: \(a b a c c a b\) \((a)(b)(E)(E)(a)(b)\)

\section*{Role of concatenation}
1. Words have been defined on \(\Sigma\).

If one takes two such words, it's always possible to form a new word by concatenating them.
2. Any word can be factorised in many different ways: \(a b a c c a b\) \((a)(b)(E)(E)(a)(b)\)
3. Since all letters of \(\Sigma\) form a word of length 1 (this set of words is called the base),
4. any word of \(\Sigma^{*}\) can be seen as a (unique) sequence of concatenations of length 1 words : \(a b a c c a b\) ( \(((((a b) a) c) c) a) b)\) \((((((a \cdot b) \cdot a) \cdot c) \cdot c) \cdot a) \cdot b)\)

\section*{Properties of concatenation}
1. Concatenation is non commutative
2. Concatenation is associative
3. Concatenation has an identity (neutral) element: \(\varepsilon\)
1. \(u v . w \neq w . u v\)
2. \((u . v) \cdot w=u .(v . w)\)
3. \(u . \varepsilon=\varepsilon . u=u\)

Notation : a.a. \(a=a^{3}\)

\section*{Overview}

Formal Languages
Basic concepts
Definition
Questions

Regular Languages

Formal Grammars

Formal complexity of Natural Languages

\section*{Language}

Def. 7 (Formal Language)
Let \(\Sigma\) be an alphabet.
A language on \(\Sigma\) is a set of words on \(\Sigma\).

\section*{Language}

Def. 7 (Formal Language)
Let \(\Sigma\) be an alphabet.
A language on \(\Sigma\) is a set of words on \(\Sigma\).
or, equivalently,
A language on \(\Sigma\) is a subset of \(\Sigma^{*}\)

\section*{Definition}

\section*{Examples I}
\[
\text { Let } \Sigma=\{a, b, c\} \text {. }
\]

\section*{Examples I}

Let \(\Sigma=\{a, b, c\}\).
\[
L_{1}=\{a a, a b, b a c\}
\]
finite language

\section*{Examples I}
\[
\text { Let } \Sigma=\{a, b, c\} \text {. }
\]
\[
\begin{array}{ll}
L_{1}=\{a a, a b, b a c\} & \text { finite language } \\
\hline L_{2}=\{a, a a, a a a, a a a a \ldots\} &
\end{array}
\]

\section*{Examples I}
\[
\text { Let } \Sigma=\{a, b, c\} \text {. }
\]
\[
\begin{array}{rlr}
L_{1}= & \{a a, a b, b a c\} & \text { finite language } \\
\hline L_{2}= & \{a, a a, \text { aaa, aaaa } \ldots\} & \\
& \text { or } L_{2}=\left\{a^{i} / i \geq 1\right\} & \text { infinite language } \\
\hline
\end{array}
\]

\section*{Examples I}
\[
\text { Let } \Sigma=\{a, b, c\} \text {. }
\]
\begin{tabular}{cl}
\(L_{1}=\{a a, a b, b a c\}\) & finite language \\
\hline\(L_{2}=\{a, a a, a a a, a a a a \ldots\}\) & \\
or \(L_{2}=\left\{a^{i} / i \geq 1\right\}\) & infinite language \\
\hline\(L_{3}=\{\varepsilon\}\) & finite language, \\
& reduced to a singleton \\
\hline
\end{tabular}

\section*{Examples I}
\[
\text { Let } \Sigma=\{a, b, c\} \text {. }
\]
\begin{tabular}{ll}
\(L_{1}=\{a a, a b, b a c\}\) & finite language \\
\hline\(L_{2}=\{a, a a, a a a, a a a a \ldots\}\) & \\
or \(L_{2}=\left\{a^{i} / i \geq 1\right\}\) & infinite language \\
\hline\(L_{3}=\{\varepsilon\}\) & finite language, \\
& reduced to a singleton \\
\hline & \(\neq\)
\end{tabular}

\section*{Examples I}
\[
\text { Let } \Sigma=\{a, b, c\} \text {. }
\]
\begin{tabular}{ll}
\(L_{1}=\{a a, a b, b a c\}\) & finite language \\
\hline\(L_{2}=\{a, a a, a a a, a a a a \ldots\}\) \\
or \(L_{2}=\left\{a^{i} / i \geq 1\right\}\) & infinite language \\
\hline\(L_{3}=\{\varepsilon\}\) & \begin{tabular}{l} 
finite language, \\
reduced to a singleton
\end{tabular} \\
\hline & \(\neq\) \\
\(L_{4}=\emptyset\) & "empty" language \\
\hline
\end{tabular}

\section*{Examples I}
\[
\text { Let } \Sigma=\{a, b, c\} \text {. }
\]
\begin{tabular}{ll}
\(L_{1}=\{a a, a b, b a c\}\) & finite language \\
\hline\(L_{2}=\{a, a a, a a a, a a a a \ldots\}\) \\
or \(L_{2}=\left\{a^{i} / i \geq 1\right\}\) & infinite language \\
\hline\(L_{3}=\{\varepsilon\}\) & \begin{tabular}{l} 
finite language, \\
\\
\\
\\
\\
\(L_{4}=\emptyset\)
\end{tabular} \\
\hline\(L_{5}=\Sigma^{*}\) & "empty" language to a singleton
\end{tabular}

\section*{Definition}

\section*{Examples II}

Let \(\Sigma=\{a\), man, loves, woman \(\}\).

\section*{Examples II}

Let \(\Sigma=\{\) a, man, loves, woman \(\}\).
\(L=\{\) a man loves a woman, a woman loves a man \(\}\)

\section*{Examples II}

Let \(\Sigma=\{\) a, man, loves, woman \(\}\).
\(L=\{\) a man loves a woman, a woman loves a man \(\}\)

Let \(\Sigma^{\prime}=\{a\), man, who, saw, fell \(\}\).

\section*{Examples II}

Let \(\Sigma=\{\) a, man, loves, woman \(\}\).
\(L=\{\) a man loves a woman, a woman loves a man \(\}\)

Let \(\Sigma^{\prime}=\{a\), man, who, saw, fell \(\}\).
\(L^{\prime}=\left\{\begin{array}{l}\text { a man fell, } \\ \text { a man who saw a man fell, } \\ \text { a man who saw a man who saw a man fell, }\end{array}\right.\)

\section*{Set operations}

Since a language is a set, usual set operations can be defined:
- union
- intersection
- set difference

\section*{Set operations}

Since a language is a set, usual set operations can be defined:
- union
- intersection
- set difference
\(\Rightarrow\) One may describe a (complex) language as the result of set operations on (simpler) languages:
\(\left\{a^{2 k} / k \geqslant 1\right\}=\{a\), aa, aaa, aaaa,\(\ldots\} \cap\left\{w w / w \in \Sigma^{*}\right\}\)

\section*{Additional operations}

Def. 8 (product operation on languages)
One can define the language product and its closure the Kleene star operation:
- The product of languages is thus defined:
\[
L_{1} \cdot L_{2}=\left\{u v / u \in L_{1} \& v \in L_{2}\right\}
\]

Notation: \(\overbrace{L . L . L \ldots L}=L^{k} ; L^{0}=\{\varepsilon\}\)
- The Kleene star of a language is thus defined:
\[
L^{*}=\bigcup_{n \geqslant 0} L^{n}
\]

\section*{References I}

Bar-Hillel, Yehoshua, Perles, Micha, \& Shamir, Eliahu. 1961. On formal properties of simple phrase structure grammars. STUF-Language Typology and Universals, 14(1-4), 143-172.
Chomsky, Noam. 1957. Syntactic Structures. Den Haag: Mouton \& Co.
Chomsky, Noam. 1995. The Minimalist Program. Vol. 28. Cambridge, Mass.: MIT Press.
Gazdar, Gerald, \& Pullum, Geoffrey K. 1985 (May). Computationally Relevant Properties of Natural Languages and Their Grammars. Tech. rept. Center for the Study of Language and Information, Leland Stanford Junior University.
Gibson, Edward, \& Thomas, James. 1997. The Complexity of Nested Structures in English: Evidence for the Syntactic Prediction Locality Theory of Linguistic Complexity. Unpublished manuscript, Massachusetts Institute of Technology.
Joshi, Aravind K. 1985. Tree Adjoining Grammars: How Much Context-Sensitivity is Required to Provide Reasonable Structural Descriptions? Tech. rept. Department of Computer and Information Science, University of Pennsylvania.
Langendoen, D Terence, \& Postal, Paul Martin. 1984. The vastness of natural languages. Basil Blackwell Oxford.
Mannell, Robert. 1999. Infinite number of sentences. part of a set of class notes on the Internet. http://clas.mq.edu.au/speech/infinite_sentences/.
Schieber, Stuart M. 1985. Evidence against the Context-Freeness of Natural Language. Linguistics and Philosophy, 8(3), 333-343.
Stabler, Edward P. 2011. Computational perspectives on minimalism. Oxford handbook of linguistic minimalism, 617-643.

\section*{References II}

Steedman, Mark, et al. . 2012 (June). Combinatory Categorial Grammars for Robust Natural Language Processing. Slides for NASSLLI course
http://homepages.inf.ed.ac.uk/steedman/papers/ccg/nasslli12.pdf.
Vijay-Shanker, K., \& Weir, David J. 1994. The Equivalence of Four Extensions of Context-Free Grammars. Mathematical Systems Theory, 27, 511-546.```

