Formal Languages and Linguistics

Pascal Amsili

Sorbonne Nouvelle, Lattice (CNRS/ENS-PSL/SN)

Cogmaster, october 2021

Overview

Formal Languages

Regular Languages

Formal Grammars
Definition
Language classes

Formal complexity of Natural Languages

Formal grammar

Def. 14 ((Formal) Grammar)
A formal grammar is defined by $\langle\Sigma, N, S, P\rangle$ where

- Σ is an alphabet
- N is a disjoint alphabet (non-terminal vocabulary)
- $S \in V$ is a distinguished element of N, called the axiom
- P is a set of « production rules », namely a subset of the cartesian product $(\Sigma \cup N)^{*} N(\Sigma \cup N)^{*} \times(\Sigma \cup N)^{*}$.

Definition

Examples

$\langle\Sigma, N, S, P\rangle$

$\mathcal{G}_{0}=\langle$

Examples

$$
\begin{gathered}
\langle\Sigma, N, S, P\rangle \\
\mathcal{G}_{0}=\langle\{j o e, \text { sam, sleeps }\},
\end{gathered}
$$

Examples

$$
\begin{array}{r}
\langle\Sigma, N, S, P\rangle \\
\mathcal{G}_{0}=\langle\{j o e, \text { sam, sleeps }\},\{N, V, S\},
\end{array}
$$

Examples

$$
\begin{array}{r}
\langle\Sigma, N, S, P\rangle \\
\mathcal{G}_{0}=\langle\{j o e, \text { sam, sleeps }\},\{N, V, S\}, S,
\end{array}
$$

Examples

$$
\begin{array}{r}
\langle\Sigma, N, S, P\rangle \\
\left.\mathcal{G}_{0}=\left\langle\{\text { joe }, \text { sam, sleeps }\},\{N, V, S\}, S,\left\{\begin{array}{l}
(N, \text { joe }) \\
(N, \text { sam }) \\
(V, \text { sleeps }) \\
(S, N V)
\end{array}\right\}\right\rangle\right\}
\end{array}
$$

Examples

$$
\begin{array}{r}
\langle\Sigma, N, S, P\rangle \\
\left.\mathcal{G}_{0}=\left\langle\{\text { joe , sam, sleeps }\},\{N, V, S\}, S,\left\{\begin{array}{l}
N \rightarrow \text { joe } \\
N \rightarrow \text { sam } \\
V \rightarrow \text { sleeps } \\
S \rightarrow N V
\end{array}\right\}\right\rangle\right\}
\end{array}
$$

Examples (cont'd)

$$
\begin{aligned}
& \left.\mathcal{G}_{1}=\left\langle\{j e a n, \text { dort }\},\{N p, S N, S V, V, S\}, S,\left\{\begin{array}{l}
S \rightarrow S N S V \\
S N \rightarrow N p \\
S V \rightarrow V \\
N p \rightarrow \text { jean } \\
V \rightarrow \text { dort }
\end{array}\right\}\right\rangle\right\} \\
& \mathcal{G}_{2}=\langle\{(,)\},\{S\}, S,\{S \longrightarrow \varepsilon \mid(S) S\}\rangle
\end{aligned}
$$

```
Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

\section*{Notation}
\[
\begin{aligned}
& \mathcal{G}_{3}: E \longrightarrow E+E \\
& E \times E \\
& \text { ( } E \text { ) } \\
& \text { - F } \\
& F \longrightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{aligned}
\]

\section*{Notation}
\[
\left.\begin{array}{rl}
\mathcal{G}_{3}: E & \longrightarrow \\
& E+E \\
& E \times E \\
& (E) \\
& \mid \\
& F
\end{array}\right]
\]

\section*{Notation}
\[
\begin{aligned}
& \mathcal{G}_{3}: E \longrightarrow E+E \\
& E \times E \\
& \text { ( } E \text { ) } \\
& F \\
& F \longrightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9 \\
& \mathcal{G}_{3}=\langle\{+, \times,(,), 0,1,2,3,4,5,6,7,8,9\},\{E, F\}, E,\{\ldots\}\rangle \\
& G_{4}=E \rightarrow E+T|T, T \rightarrow T \times F| F, F \rightarrow(E) \mid a
\end{aligned}
\]

\section*{Immediate Derivation}

Def. 15 (Immediate derivation)
Let \(\mathcal{G}=\langle X, V, S, P\rangle\) a grammar, \((f, g) \in(X \cup V)^{*}\) two "words",
\(r \in P\) a production rule, such that \(r: A \longrightarrow u\left(u \in(X \cup V)^{*}\right)\).
- \(f\) derives into \(g\) (immediate derivation) with the rule \(r\)
(noted \(f \xrightarrow{r} g\) ) iff
\(\exists v, w\) s.t. \(f=v A w\) and \(g=v u w\)
- \(f\) derives into \(g\) (immediate derivation) in the grammar \(\mathcal{G}\) (noted \(f \xrightarrow{\mathcal{G}} g\) ) iff \(\exists r \in P\) s.t. \(f \xrightarrow{r} g\).

\section*{Derivation}

Def. 16 (Derivation)
\(f \xrightarrow{\mathcal{G} *} g\) if \(f=g\)
\[
\begin{align*}
\exists f_{0}, f_{1}, f_{2}, \ldots, f_{n} \text { s.t. } & f_{0}=f  \tag{or}\\
& f_{n}=g \\
\forall i & \in[1, n]: f_{i-1} \xrightarrow{\mathcal{G}} f_{i}
\end{align*}
\]

An example with \(\mathcal{G}_{0}\) :
\(N V\) joe \(N\)

\section*{Derivation}

Def. 16 (Derivation)
\(f \xrightarrow{\mathcal{G}_{*}} g\) if \(f=g\)
\[
\begin{align*}
\exists f_{0}, f_{1}, f_{2}, \ldots, f_{n} \text { s.t. } & f_{0}=f  \tag{or}\\
& f_{n}=g \\
& \forall i \in[1, n]: f_{i-1} \xrightarrow{\mathcal{G}} f_{i}
\end{align*}
\]

An example with \(\mathcal{G}_{0}\) :
\(N V\) joe \(N \longrightarrow \operatorname{sam} V\) joe \(N\)

\section*{Derivation}

Def. 16 (Derivation)
\(f \xrightarrow{\mathcal{G} *} g\) if \(f=g\)
\[
\begin{align*}
\exists f_{0}, f_{1}, f_{2}, \ldots, f_{n} \text { s.t. } & f_{0}=f  \tag{or}\\
& f_{n}=g \\
\forall i & \in[1, n]: f_{i-1} \xrightarrow{\mathcal{G}} f_{i}
\end{align*}
\]

An example with \(\mathcal{G}_{0}\) :
\(N V\) joe \(N \longrightarrow \operatorname{sam} V\) joe \(N \longrightarrow\) sam \(V\) joe joe

\section*{Derivation}

Def. 16 (Derivation)
\(f \xrightarrow{\mathcal{G} *} g\) if \(f=g\)
\[
\begin{align*}
&\left.\exists f_{0}, f_{1}, f_{2}, \ldots, f_{n} \text { s.t. } \begin{array}{l}
f_{0}
\end{array}\right)  \tag{or}\\
& f_{n}=g \\
& \forall i \in[1, n]: f_{i-1} \xrightarrow{G} f_{i}
\end{align*}
\]

An example with \(\mathcal{G}_{0}\) :
\(N V\) joe \(N \longrightarrow\) sam \(V\) joe \(N \longrightarrow\) sam \(V\) joe joe

\section*{Derivation}

Def. 16 (Derivation)
\(f \xrightarrow{\mathcal{G} *} g\) if \(f=g\)
\[
\begin{align*}
&\left.\exists f_{0}, f_{1}, f_{2}, \ldots, f_{n} \text { s.t. } \begin{array}{l}
f_{0}
\end{array}\right)  \tag{or}\\
& f_{n}=g \\
& \forall i \in[1, n]: f_{i-1} \xrightarrow{G} f_{i}
\end{align*}
\]

An example with \(\mathcal{G}_{0}\) :
\(N V\) joe \(N \longrightarrow\) sam \(V\) joe \(N \longrightarrow\) sam \(V\) joe joe
sam sleeps joe \(N\) or

\section*{Endpoint of a derivation}
\(\mathcal{G}_{3}: E \longrightarrow E+E\)

\(F \longrightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9\)

An example with \(\mathcal{G}_{3}\) :
\(E \times E\)

\section*{Endpoint of a derivation}
\(\mathcal{G}_{3}: E \longrightarrow E+E\)

| (E)

\(F \longrightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9\)

An example with \(\mathcal{G}_{3}\) :
\(E \times E \longrightarrow F \times E\)

\section*{Endpoint of a derivation}
\[
\begin{aligned}
& \mathcal{G}_{3}: E \longrightarrow E+E \\
& E \times E \\
& \text { ( } E \text { ) } \\
& F \\
& F \longrightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{aligned}
\]

An example with \(\mathcal{G}_{3}\) :
\(E \times E \longrightarrow F \times E \longrightarrow 3 \times E\)

\section*{Endpoint of a derivation}
\[
\begin{aligned}
& \mathcal{G}_{3}: E \longrightarrow E+E \\
& E \times E \\
& \text { ( } E \text { ) } \\
& \text { F } \\
& F \longrightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{aligned}
\]

An example with \(\mathcal{G}_{3}\) :
\(E \times E \longrightarrow F \times E \longrightarrow 3 \times E \longrightarrow 3 \times(E)\)

\section*{Endpoint of a derivation}
\[
\begin{array}{rl}
\mathcal{G}_{3}: E \longrightarrow & E+E \\
& \left\lvert\, \begin{array}{l}
\text { P }
\end{array}\right. \\
& \mid E) \\
& \mid \\
F & F \\
F & 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{array}
\]

An example with \(\mathcal{G}_{3}\) :
\(E \times E \longrightarrow F \times E \longrightarrow 3 \times E \longrightarrow 3 \times(E) \longrightarrow 3 \times(E+E)\)

\section*{Endpoint of a derivation}
\[
\begin{aligned}
\mathcal{G}_{3}: E & \\
& E+E \\
& E \times E \\
& \mid E) \\
& \mid \\
F & \\
& \\
& 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{aligned}
\]

An example with \(\mathcal{G}_{3}\) :
\(E \times E \longrightarrow F \times E \longrightarrow 3 \times E \longrightarrow 3 \times(E) \longrightarrow 3 \times(E+E) \longrightarrow\) \(3 \times(E+F)\)

\section*{Endpoint of a derivation}
\[
\begin{array}{rl}
\mathcal{G}_{3}: E \longrightarrow & E+E \\
& E \times E \\
& \mid E) \\
& \mid \\
F & F \\
F & 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{array}
\]

An example with \(\mathcal{G}_{3}\) :
\(E \times E \longrightarrow F \times E \longrightarrow 3 \times E \longrightarrow 3 \times(E) \longrightarrow 3 \times(E+E) \longrightarrow\) \(3 \times(E+F) \longrightarrow 3 \times(E+4)\)

\section*{Endpoint of a derivation}
\[
\begin{array}{rl}
\mathcal{G}_{3}: E \longrightarrow & E+E \\
& E \times E \\
& \mid E) \\
& \mid \\
F & F \\
F & 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{array}
\]

An example with \(\mathcal{G}_{3}\) :
\(E \times E \longrightarrow F \times E \longrightarrow 3 \times E \longrightarrow 3 \times(E) \longrightarrow 3 \times(E+E) \longrightarrow\) \(3 \times(E+F) \longrightarrow 3 \times(E+4) \longrightarrow 3 \times(F+4)\)

\section*{Endpoint of a derivation}
\[
\begin{array}{rl}
\mathcal{G}_{3}: E \longrightarrow & E+E \\
& E \times E \\
& \mid E) \\
& \mid \\
F & F \\
F & 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{array}
\]

An example with \(\mathcal{G}_{3}\) :
\(E \times E \longrightarrow F \times E \longrightarrow 3 \times E \longrightarrow 3 \times(E) \longrightarrow 3 \times(E+E) \longrightarrow\) \(3 \times(E+F) \longrightarrow 3 \times(E+4) \longrightarrow 3 \times(F+4) \longrightarrow 3 \times(5+4)\)

\section*{Endpoint of a derivation}
\[
\begin{array}{rl}
\mathcal{G}_{3}: E \longrightarrow & E+E \\
& E \times E \\
& \mid E) \\
& \mid \\
F & F \\
F & 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{array}
\]

An example with \(\mathcal{G}_{3}\) :
\(E \times E \longrightarrow F \times E \longrightarrow 3 \times E \longrightarrow 3 \times(E) \longrightarrow 3 \times(E+E) \longrightarrow\) \(3 \times(E+F) \longrightarrow 3 \times(E+4) \longrightarrow 3 \times(F+4) \longrightarrow 3 \times(5+4) \longrightarrow\)

\section*{Engendered language}

Def. 17 (Language engendered by a word)
Let \(f \in(\Sigma \cup N)^{*}\).
\(L_{\mathcal{G}}(f)=\left\{g \in X^{*} / f \xrightarrow{\mathcal{G}_{*}} g\right\}\)
Def. 18 (Language engendered by a grammar)
The language engendered by a grammar \(\mathcal{G}\) is the set of words of \(\Sigma^{*}\) derived from the axiom.
\[
L_{\mathcal{G}}=L_{\mathcal{G}}(S)
\]

\section*{Engendered language}

Def. 17 (Language engendered by a word)
Let \(f \in(\Sigma \cup N)^{*}\).
\(L_{\mathcal{G}}(f)=\left\{g \in X^{*} / f \xrightarrow{\mathcal{G}_{*}} g\right\}\)
Def. 18 (Language engendered by a grammar)
The language engendered by a grammar \(\mathcal{G}\) is the set of words of \(\Sigma^{*}\) derived from the axiom.
\(L_{\mathcal{G}}=L_{\mathcal{G}}(S)\)
For instance ()\(\in L_{\mathcal{G}_{2}}\) :

\section*{Engendered language}

Def. 17 (Language engendered by a word)
Let \(f \in(\Sigma \cup N)^{*}\).
\(L_{\mathcal{G}}(f)=\left\{g \in X^{*} / f \xrightarrow{\mathcal{G}_{*}} g\right\}\)
Def. 18 (Language engendered by a grammar)
The language engendered by a grammar \(\mathcal{G}\) is the set of words of \(\Sigma^{*}\) derived from the axiom.
\(L_{\mathcal{G}}=L_{\mathcal{G}}(S)\)
For instance ()\(\in L_{\mathcal{G}_{2}}: S \rightarrow(S) S\)

\section*{Engendered language}

Def. 17 (Language engendered by a word)
Let \(f \in(\Sigma \cup N)^{*}\).
\(L_{\mathcal{G}}(f)=\left\{g \in X^{*} / f \xrightarrow{\mathcal{G}_{*}^{*}} g\right\}\)
Def. 18 (Language engendered by a grammar)
The language engendered by a grammar \(\mathcal{G}\) is the set of words of \(\Sigma^{*}\) derived from the axiom.
\(L_{\mathcal{G}}=L_{\mathcal{G}}(S)\)
For instance ()\(\in L_{\mathcal{G}_{2}}: S \rightarrow(S) S \rightarrow() S\)

\section*{Engendered language}

Def. 17 (Language engendered by a word)
Let \(f \in(\Sigma \cup N)^{*}\).
\(L_{\mathcal{G}}(f)=\left\{g \in X^{*} / f \xrightarrow{\mathcal{G}_{*}} g\right\}\)
Def. 18 (Language engendered by a grammar)
The language engendered by a grammar \(\mathcal{G}\) is the set of words of \(\Sigma^{*}\) derived from the axiom.
\(L_{\mathcal{G}}=L_{\mathcal{G}}(S)\)
For instance ()\(\in L_{\mathcal{G}_{2}}: S \rightarrow(S) S \rightarrow() S \rightarrow()\)

\section*{Engendered language}

Def. 17 (Language engendered by a word)
Let \(f \in(\Sigma \cup N)^{*}\).
\(L_{\mathcal{G}}(f)=\left\{g \in X^{*} / f \xrightarrow{\mathcal{G}_{*}} g\right\}\)
Def. 18 (Language engendered by a grammar)
The language engendered by a grammar \(\mathcal{G}\) is the set of words of \(\Sigma^{*}\) derived from the axiom.
\(L_{\mathcal{G}}=L_{\mathcal{G}}(S)\)
For instance ()\(\in L_{\mathcal{G}_{2}}: S \rightarrow(S) S \rightarrow() S \rightarrow()\) as well as \(((())),()()(),((()()())) \ldots\)

\section*{Engendered language}

Def. 17 (Language engendered by a word)
Let \(f \in(\Sigma \cup N)^{*}\).
\(L_{\mathcal{G}}(f)=\left\{g \in X^{*} / f \xrightarrow{\mathcal{G} *} g\right\}\)
Def. 18 (Language engendered by a grammar)
The language engendered by a grammar \(\mathcal{G}\) is the set of words of \(\Sigma^{*}\) derived from the axiom.
\(L_{\mathcal{G}}=L_{\mathcal{G}}(S)\)
For instance ()\(\in L_{\mathcal{G}_{2}}: S \rightarrow(S) S \rightarrow() S \rightarrow()\) as well as \(((())),()()(),((()()())) \ldots\)
but \()()\left(\notin L_{\mathcal{G}_{2}}\right.\), even though the following is a licit derivation :

\section*{Engendered language}

Def. 17 (Language engendered by a word)
Let \(f \in(\Sigma \cup N)^{*}\).
\(L_{\mathcal{G}}(f)=\left\{g \in X^{*} / f \xrightarrow{\mathcal{G} *} g\right\}\)
Def. 18 (Language engendered by a grammar)
The language engendered by a grammar \(\mathcal{G}\) is the set of words of \(\Sigma^{*}\) derived from the axiom.
\(L_{\mathcal{G}}=L_{\mathcal{G}}(S)\)
For instance ()\(\in L_{\mathcal{G}_{2}}: S \rightarrow(S) S \rightarrow() S \rightarrow()\) as well as \(((())),()()(),((()()())) \ldots\)
but \()()\left(\notin L_{\mathcal{G}_{2}}\right.\), even though the following is a licit derivation :
)S \((\rightarrow\)

\section*{Engendered language}

Def. 17 (Language engendered by a word)
Let \(f \in(\Sigma \cup N)^{*}\).
\(L_{\mathcal{G}}(f)=\left\{g \in X^{*} / f \xrightarrow{\mathcal{G} *} g\right\}\)
Def. 18 (Language engendered by a grammar)
The language engendered by a grammar \(\mathcal{G}\) is the set of words of \(\Sigma^{*}\) derived from the axiom.
\(L_{\mathcal{G}}=L_{\mathcal{G}}(S)\)
For instance ()\(\in L_{\mathcal{G}_{2}}: S \rightarrow(S) S \rightarrow() S \rightarrow()\) as well as \(((())),()()(),((()()())) \ldots\)
but \()()\left(\notin L_{\mathcal{G}_{2}}\right.\), even though the following is a licit derivation:
\() S(\rightarrow)(S) S(\rightarrow\)

\section*{Engendered language}

Def. 17 (Language engendered by a word)
Let \(f \in(\Sigma \cup N)^{*}\).
\(L_{\mathcal{G}}(f)=\left\{g \in X^{*} / f \xrightarrow{\mathcal{G} *} g\right\}\)
Def. 18 (Language engendered by a grammar)
The language engendered by a grammar \(\mathcal{G}\) is the set of words of \(\Sigma^{*}\) derived from the axiom.
\(L_{\mathcal{G}}=L_{\mathcal{G}}(S)\)
For instance ()\(\in L_{\mathcal{G}_{2}}: S \rightarrow(S) S \rightarrow() S \rightarrow()\) as well as \(((())),()()(),((()()())) \ldots\)
but \()()\left(\notin L_{\mathcal{G}_{2}}\right.\), even though the following is a licit derivation:
\() S(\rightarrow)(S) S(\rightarrow)() S(\rightarrow\)

\section*{Engendered language}

Def. 17 (Language engendered by a word)
Let \(f \in(\Sigma \cup N)^{*}\).
\(L_{\mathcal{G}}(f)=\left\{g \in X^{*} / f \xrightarrow{\mathcal{G} *} g\right\}\)
Def. 18 (Language engendered by a grammar)
The language engendered by a grammar \(\mathcal{G}\) is the set of words of \(\Sigma^{*}\) derived from the axiom.
\(L_{\mathcal{G}}=L_{\mathcal{G}}(S)\)
For instance ()\(\in L_{\mathcal{G}_{2}}: S \rightarrow(S) S \rightarrow() S \rightarrow()\) as well as \(((())),()()(),((()()())) \ldots\)
but \()()\left(\notin L_{\mathcal{G}_{2}}\right.\), even though the following is a licit derivation:
\() S(\rightarrow)(S) S(\rightarrow)() S(\rightarrow)()(\)

\section*{Engendered language}

Def. 17 (Language engendered by a word)
Let \(f \in(\Sigma \cup N)^{*}\).
\(L_{\mathcal{G}}(f)=\left\{g \in X^{*} / f \xrightarrow{\mathcal{G}_{*}} g\right\}\)
Def. 18 (Language engendered by a grammar)
The language engendered by a grammar \(\mathcal{G}\) is the set of words of \(\Sigma^{*}\) derived from the axiom.
\(L_{\mathcal{G}}=L_{\mathcal{G}}(S)\)
For instance ()\(\in L_{\mathcal{G}_{2}}: S \rightarrow(S) S \rightarrow() S \rightarrow()\) as well as \(((())),()()(),((()()())) \ldots\)
but \()()\left(\notin L_{\mathcal{G}_{2}}\right.\), even though the following is a licit derivation :
\() S(\rightarrow)(S) S(\rightarrow)() S(\rightarrow)()(\) for there is no way to arrive at ) \(S\) ( starting with \(S\).
```

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Example

$$
G_{4}=E \rightarrow E+T|T, T \rightarrow T \times F| F, F \rightarrow(E) \mid a
$$

$$
a+a, a+(a \times a), \ldots
$$

Proto－word

Def． 19 （Proto－word）

A proto－word（or proto－sentence）is a word on $(\Sigma \cup N)^{*} N(\Sigma \cup N)^{*}$ （that is，a word containing at least one letter of N ）produced by a derivation from the axiom．

$$
\begin{aligned}
& E \rightarrow E+T \rightarrow E+T * F \rightarrow T+T * F \rightarrow T+F * F \rightarrow \\
& T+a * F \rightarrow F+a * F \rightarrow a+a * F \rightarrow \mid \text { 体的州|a }
\end{aligned}
$$

```
Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

\section*{Multiple derivations}

A given word may have several derivations:
\(E \rightarrow E+E \rightarrow F+E \rightarrow F+F \rightarrow 3+F \rightarrow 3+4\)
```

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Multiple derivations

A given word may have several derivations:
$E \rightarrow E+E \rightarrow F+E \rightarrow F+F \rightarrow 3+F \rightarrow 3+4$
$E \rightarrow E+E \rightarrow E+F \rightarrow E+4 \rightarrow F+4 \rightarrow 3+4$

Multiple derivations

A given word may have several derivations:
$E \rightarrow E+E \rightarrow F+E \rightarrow F+F \rightarrow 3+F \rightarrow 3+4$
$E \rightarrow E+E \rightarrow E+F \rightarrow E+4 \rightarrow F+4 \rightarrow 3+4$
... but if the grammar is not ambiguous, there is only one left derivation:

Multiple derivations

A given word may have several derivations:
$E \rightarrow E+E \rightarrow F+E \rightarrow F+F \rightarrow 3+F \rightarrow 3+4$
$E \rightarrow E+E \rightarrow E+F \rightarrow E+4 \rightarrow F+4 \rightarrow 3+4$
... but if the grammar is not ambiguous, there is only one left derivation:
$\underline{E} \rightarrow \underline{E}+E \rightarrow \underline{F}+E \rightarrow 3+\underline{E} \rightarrow 3+\underline{F} \rightarrow 3+4$

Multiple derivations

A given word may have several derivations:
$E \rightarrow E+E \rightarrow F+E \rightarrow F+F \rightarrow 3+F \rightarrow 3+4$
$E \rightarrow E+E \rightarrow E+F \rightarrow E+4 \rightarrow F+4 \rightarrow 3+4$
... but if the grammar is not ambiguous, there is only one left derivation:

$$
\underline{E} \rightarrow \underline{E}+E \rightarrow \underline{F}+E \rightarrow 3+\underline{E} \rightarrow 3+\underline{F} \rightarrow 3+4
$$

parsing: trying to find the/a left derivation (resp. right)

Derivation tree

For context-free languages, there is a way to represent the set of equivalent derivations, via a derivation tree which shows all the derivation independantly of their order.
$\begin{array}{lll}\text { Grammar } \mathcal{G}_{2}: S \longrightarrow & \varepsilon \\ & S(S) S\end{array}$

$S \rightarrow(S) S \rightarrow((S) S) S \rightarrow((S) S) \rightarrow((S)) \rightarrow(())$

Structural analysis

Syntactic trees are precious to give access to the semantics

Ambiguity

When a grammar can assign more than one derivation tree to a word $w \in L(G)$ (or more than one left derivation), the grammar is ambiguous.
For instance, \mathcal{G}_{3} is ambiguous, since it can assign the two follwing trees to $1+2 \times 3$:

About ambiguity

- Ambiguity is not desirable for the semantics
- Useful artificial languages are rarely ambiguous
- There are context-free languages that are intrinsequely ambiguous (3)
- Natural languages are notoriously ambiguous...
(3) $\quad\left\{a^{n} b a^{m} b a^{p} b a^{q} \mid(n \geqslant q \wedge m \geqslant p) \vee(n \geqslant m \wedge p \geqslant q)\right\}$

```
Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

\section*{Comparison of grammars}
- different languages generated \(\Rightarrow\) different grammars
- same language generated by \(\mathcal{G}\) and \(\mathcal{G}^{\prime}\) :
\(\Rightarrow\) same weak generative power
- same language generated by \(\mathcal{G}\) and \(\mathcal{G}^{\prime}\), and same structural decomposition :
\(\Rightarrow\) same strong generative power
```

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Overview

Formal Languages

Regular Languages

Formal Grammars
Definition
Language classes

Formal complexity of Natural Languages

```
Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

\section*{Principle}

Define language families on the basis of properties of the grammars that generate them :
1. Four classes are defined, they are included one in another
2. A language is of type \(k\) if it can be recognized by a type \(k\) grammar (and thus, by definition, by a type \(k-1\) grammar) ; and cannot be recognized by a grammar of type \(k+1\).

\section*{Chomsky's hierarchy}
type 0 No restriction on
\[
P \subset(X \cup V)^{*} V(X \cup V)^{*} \times(X \cup V)^{*}
\]
type 1 (context-sensitive grammars) All rules of \(P\) are of the shape \(\left(u_{1} S u_{2}, u_{1} m u_{2}\right)\), where \(u_{1}\) and \(u_{2} \in(X \cup V)^{*}\), \(S \in V\) and \(m \in(X \cup V)^{+}\).
type 2 (context-free grammar) All rules of \(P\) are of the shape \((S, m)\), where \(S \in V\) and \(m \in(X \cup V)^{*}\).
type 3 (regular grammars) All rules of \(P\) are of the shape \((S, m)\), where \(S \in V\) and \(m \in X . V \cup X \cup\{\varepsilon\}\).
```

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Examples

```
type 3:
    S }->aS|aB|bB|c
    B }->\textrm{bB|b
    A }->cS|b
```

```
Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

\section*{Examples}

\section*{type 3:}
\[
\begin{aligned}
& S \rightarrow a S|a B| b B \mid c A \\
& B \rightarrow b B \mid b \\
& A \rightarrow c S \mid b B
\end{aligned}
\]
type 2:
\(E \rightarrow E+T|T, T \rightarrow T \times F| F, F \rightarrow(E) \mid a\)
```

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Example 1 type 0

$$
\begin{array}{lll}
\text { Type 0: } & & \\
S \rightarrow S A B C & A C \rightarrow C A & A \rightarrow a \\
S \rightarrow \varepsilon & C A \rightarrow A C & B \rightarrow b \\
A B \rightarrow B A & B C \rightarrow C B & C \rightarrow c \\
B A \rightarrow A B & C B \rightarrow B C & \\
\text { generated language : }
\end{array}
$$

Example 1 type 0

> Type 0:
> $S \rightarrow S A B C \quad A C \rightarrow C A \quad A \rightarrow a$
> $S \quad \rightarrow \varepsilon \quad C A \rightarrow A C \quad B \rightarrow b$
> $A B \rightarrow B A \quad B C \rightarrow C B \quad C \rightarrow c$
> $B A \rightarrow A B \quad C B \rightarrow B C$
> generated language : words with an equal number of a, b, and c.

```
Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

\section*{Example 2: type 0}

Type 0: \(S \rightarrow \$ S^{\prime} \$ \quad A a \rightarrow a A \quad \$ a \rightarrow a \$\)
\(S^{\prime} \rightarrow a A S^{\prime} \quad A b \rightarrow b A \quad \$ b \rightarrow b \$\)
\(S^{\prime} \rightarrow b B S^{\prime} \quad B a \rightarrow a B \quad A \$ \rightarrow \$ a\)
\(S^{\prime} \rightarrow \varepsilon \quad B b \rightarrow b B \quad B \$ \rightarrow \$ b\)
\$\$ \(\rightarrow\) \#
```

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Example 2: type 0 (cont'd)

$\$$	a	A	b	B	$\$$
a	$\$$	A	b	B	$\$$
a	$\$$	A	b	$\$$	b
a	$\$$	b	A	$\$$	b
a	b	$\$$	A	$\$$	b
a	b	$\$$	$\$$	a	b
a	b	$\#$	a	b	

Language classes

Language families

Sorbonne Nouvelle

```
Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

\section*{Remarks}
- There are others ways to classify languages,
- either on other properties of the grammars;
- or on other properties of the languages
- Nested structures are preferred, but it's not necessary
- When classes are nested, it is expected to have a growth of complexity/expressive power

\section*{Overview}

Formal Languages

Regular Languages

Formal Grammars

Formal complexity of Natural Languages
Introduction
Are NL regular?
Are NL context-free?
Are NL context-sensitive?
```

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Motivation

Why an inquiry into the formal complexity of Natural Language(s) ?

- It gives us knowledge about the structure of natural languages,
- It helps us assess the adequation of linguistic formalisms,
- It gives bound for the complexity of NLP tasks,
- It provides us with predictions about human language processing.

Hypotheses

We assume that:

- We can talk about "natural language" in general: all languages have a similar structure, a similar power
- Natural languages are recursively enumerable, i.e. they are formal languages
- Natural languages are infinite
\Rightarrow Under these hypotheses, it is possible to ask the question: what is the complexity of natural languages ?

```
Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

\section*{An infinite number of sentences}
1. Arbitrary long sentences can be built by adding new material:
(4) A stranger arrived.
```

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

An infinite number of sentences

1. Arbitrary long sentences can be built by adding new material:
(4) A tall stranger arrived.
```
Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

\section*{An infinite number of sentences}
1. Arbitrary long sentences can be built by adding new material:
(4) A tall handsome stranger arrived.
```

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

An infinite number of sentences

1. Arbitrary long sentences can be built by adding new material:
(4) A dark tall handsome stranger arrived.
```
Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

\section*{An infinite number of sentences}
1. Arbitrary long sentences can be built by adding new material:
(4) A dark tall handsome stranger arrived suddenly.
```

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

An infinite number of sentences

1. Arbitrary long sentences can be built by adding new material:
(4) A dark tall handsome stranger arrived suddenly.
2. More interestingly, arbitrary long sentences can be built through center-embedding. In this case, there is a dependancy between arbitrary far apart elements:
(5) The cats hunt.
center-embedding: embedding a phrase in the middle of another phrase of the same type
```
Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

\section*{An infinite number of sentences}
1. Arbitrary long sentences can be built by adding new material:
(4) A dark tall handsome stranger arrived suddenly.
2. More interestingly, arbitrary long sentences can be built through center-embedding. In this case, there is a dependancy between arbitrary far apart elements:
(5) The cats the neighbor owns hunt.
center-embedding: embedding a phrase in the middle of another phrase of the same type

\section*{An infinite number of sentences}
1. Arbitrary long sentences can be built by adding new material:
(4) A dark tall handsome stranger arrived suddenly.
2. More interestingly, arbitrary long sentences can be built through center-embedding. In this case, there is a dependancy between arbitrary far apart elements:
(5) The cats the neighbor who arrived owns hunt.
center-embedding: embedding a phrase in the middle of another phrase of the same type

\section*{An infinite number of sentences (cont'd)}

Consider the 3 structures:
- If \(S_{1}\), then \(S_{2}\).
- Either \(S_{1}\) or \(S_{2}\).
- The man who said \(S_{1}\) is coming today.
1. The colored items are dependent one from the other
2. It is possible to create nested sentences of arbitrary length:
(6) If either the man who said \(S_{a}\) is coming today, or \(S_{b}\), then \(S_{c}\).
\(\Rightarrow\) A look at various ways to form infinite sentences gives access to complexity.

\section*{Overview}

Formal Languages

Regular Languages

Formal Grammars

Formal complexity of Natural Languages
Introduction
Are NL regular?
Are NL context-free?
Are NL context-sensitive?

\section*{Preliminaries: a word on lexicon}
(7) A dark tall handsome stranger arrived suddently.


\section*{Preliminaries: a word on lexicon}
(7) A dark tall handsome stranger arrived suddently.


Let's leave aside lexicon issues

\section*{Preliminaries: a word on lexicon}
(7) A dark tall handsome stranger arrived suddently.


Let's leave aside lexicon issues


\section*{Chomsky's first attempt}

Consider the 3 structures:
- If \(S_{1}\), then \(S_{2}\).
- Either \(S_{1}\) or \(S_{2}\).
- The man who said \(S_{1}\) is coming today.
1. The colored items are dependent one from the other
2. It is possible to create nested sentences of arbitrary length:
(8) If either the man who said \(S_{a}\) is coming today, or \(S_{b}\), then \(S_{c}\).

Since such sentences are instances of mirroring and since the mirror language is not regular, then English is not regular (Chomsky, 1957, p. 22).
Fallacious claim: a regular language may contain a non regw̌iabonne :", sub-language
```

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Classical argument I

Let's consider the sentence(s):
(9) A man fired another man.

```
Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

\section*{Classical argument I}

Let's consider the sentence(s):
(9) A man that a man hired fired another man.
```

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Classical argument I

Let's consider the sentence(s):
(9) A man that a man that a man hired hired fired another man.

```
Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

\section*{Classical argument I}

Let's consider the sentence(s):
(9) A man that a man that a man hired hired fired another man. A man (that a man) \({ }^{2}(\text { hired })^{2}\) fired another man.

\section*{Classical argument I}

Let's consider the sentence(s):
(9) A man that a man that a man hired hired fired another man. A man (that a man) \({ }^{2}(\text { hired })^{2}\) fired another man.

The sentences (10) are all well-formed sentences (for any \(n\) ).
(10) A man (that a man) \({ }^{n}(\text { hired })^{n}\) fired another man.

\section*{Classical Argument II}

Let \(x=\) that a man
\[
y=\text { hired }
\]
\(w=\mathrm{a}\) man
\(v=\) fired another man
- \(w x^{*} y^{*} v\) is regular
- English \(\cap w x^{*} y^{*} v=w x^{n} y^{n} v\) (10)
- If English is regular, then \(w x^{n} y^{n} v\) must be regular (for the intersection of two regular languages is regular)
- But \(w x^{n} y^{n} v\) is not regular (pumping lemma). Contradiction \(\quad \Rightarrow\) English is not regular.
(Schieber, 1985)
Sordonne

\section*{Discussion}

Counter arguments :
- Natural languages are finite
- productivity doesn't seem to be bound
- a list of all possible sentences, supposedly finite, is still too long for a human to learn
- People are bad at interpreting embedding: there might be a limit
- there are indeed constraints on performance,
- but in writing, or with an appropriate intonation, there doesn't seem to be a hard-wired limit

\section*{Discussion: processing problems with nested structures}

Psycholinguistic evidence that (11b) is more accepted than (11a) (Fodor, Frazier)
(11) a. The patient who the nurse who the clinic had hired admitted met Jack.
b. The patient who the nurse who the clinic had hired met Jack.

Other factors:
(12) a. The pictures which the photographer who I met yesterday took were damaged by the child.
b. ?The pictures which the photographer who John met yesterday took were damaged by the child.
(13) a. Isn't it true that example sentences [ that people [ that you know ] produce ] are more likely to be accepted? (De Roeck et al, 1982)
b. A book [ that some Italian [ I've never heard of ] wrote ] will be published soon by MIT Press (Frank, 1992)
(Gibson \& Thomas, 1997drbonne :V:

\section*{Examples}

Bad examples :
(14) A girl that the man that the doctor knows like was fired.

Good examples:
(15) A foreman that an employee who were recently hired talked with was fired.

\section*{Overview}

Formal Languages

Regular Languages

Formal Grammars

Formal complexity of Natural Languages
Introduction
Are NL regular?
Are NL context-free?
Are NL context-sensitive?

\section*{Pumping lemma: intuition}
1. If a word is long enough, then there is (at least) one non terminal symbol appearing several times in its derivation
"long enough" ?
\begin{tabular}{lll}
\(S\) & \(\rightarrow\) & \(A B\) \\
\(A\) & \(\rightarrow\) & \(a b a c c a b c a\) \\
& \(\mid\) & \(a b S b a\) \\
\(B\) & \(\rightarrow\) & \(c c c c c\)
\end{tabular}

Minimal length : 14:
\(S \rightarrow A B \rightarrow\) abaccabcaB \(\rightarrow\) abaccabcaccccc
```

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Pumping lemma: intuition

2 Let's call this non terminal symbol A.

Pumping lemma: intuition

2 Let's call this non terminal symbol A.


```
Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

\section*{Pumping lemma: intuition}

2 Let's call this non terminal symbol \(A\).

u A v


Z
\[
\begin{aligned}
& A \xrightarrow{*} u A v \\
& A \xrightarrow{*} u A v \xrightarrow{*} u z v \\
& A \xrightarrow{*} u A v \xrightarrow{*} u u A v v \xrightarrow{*} \underbrace{u \ldots u}_{n} z \underbrace{v \ldots v}_{n}
\end{aligned}
\]

\section*{Pumping Lemma for CF languages}

\section*{Def. 20 (Star lemma - CF languages)}

If \(L\) is context-free, there exists \(p \in \mathbb{N}\) such that:
\(\forall w\) s.t. \(|w| \geqslant p\),
\(w\) can be factorized \(w=r\) rstuv, with:
\[
\begin{aligned}
& |s u| \geqslant 1 \\
& |s t u| \leqslant p
\end{aligned}
\]
\[
\forall i \geqslant 0, \quad r s^{i} t u^{i} v \in L
\]
(Bar-Hillel et al. , 1961)

\section*{Pumping lemma: Consequences}

The pumping lemma gives us a tool to prove that a language is not context-free.
\begin{tabular}{|lll|}
\hline \(\mathcal{L}\) context-free & \(\Rightarrow\) & pumping lemma \(\left(\forall i, r s^{i} t u^{i} v \in \mathcal{L}\right)\) \\
pumping lemma & \(\nRightarrow\) & \(\mathcal{L}\) context-free \\
\hline NO pumping lemma & \(\Rightarrow\) & \(\mathcal{L}\) NOT context-free \\
\hline
\end{tabular}
to prove that \(\mathcal{L}\) is
context-free provide a type 2 grammar
not context-free show that the pumping lemma does not apply

\section*{Results: expressivity}
- well-parenthetized words (dyck's language) is context-free \(S \rightarrow(S) S \mid \varepsilon\)
- \(a^{n} b^{n}(n \geqslant 0)\) is a context-free language
\(S \rightarrow a S b \mid \varepsilon\)
- \(w w^{R}, w \in \Sigma^{*}\) (mirror language) is a context-free language \(S \rightarrow a S a|b S b| \varepsilon\)
- \(w w, w \in \Sigma^{*}\) (copy language) is not context-free proof: pumping lemma
- \(a^{n} b^{n} c^{n}\) is not context-free
proof: pumping lemma
- \(a^{m} b^{n} c^{m} d^{n}\) is not context-free proof: pumping lemma
- \(x a^{m} b^{n} y c^{m} d^{n} z\) is not context-free

\section*{Closure properties I}
- CF languages are closed under rational operations
- union (gather all the rules, avoiding name conflicts, and adding a new start rule \(\left.S \rightarrow S_{1} \mid S_{2}\right)\),
- product \(\left(S \rightarrow S_{1} S_{2}\right)\),
- and Kleene star \(\left(S \rightarrow S_{1} S \mid \varepsilon\right)\).

\section*{Closure properties II : intersection}
- CF languages are not closed under intersection

Example
\(L_{1}=\left\{a^{i} b^{i} c^{j} \mid i, j \geq 0\right\}\) is context-free: \(\quad S \rightarrow X Y\) \(X \rightarrow a X b \mid \varepsilon\)
\[
Y \rightarrow c Y \mid \varepsilon
\]
\(L_{2}=\left\{a^{i} b^{j} c^{j} \mid i, j \geq 0\right\}\) is also context-free: \(\quad S \rightarrow X Y\) \(X \rightarrow a X \mid \varepsilon\) \(Y \rightarrow b Y c \mid \varepsilon\)
But \(L_{1} \cap L_{2}=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}\) is not contex-free.

\section*{Closure properties III: other results}
- CF languages are not closed under complement (since they are not closed under intersection)
- CF languages are closed under intersection with a regular language
- a sub-class of CF languages, deterministic CF languages are closed for set complement, but not for union (one can easily define an intrinsequely non deterministic language as the union of two "independant" languages)

\section*{Final argument I}

After many attempts by various scholars, attempts which are severely critized and ruined in (Gazdar \& Pullum, 1985), Schieber (1985) came up with a widely accepted answer:
1. In swiss-german, subordinate clauses can have a structure where all NPs precede all Vs. (16)
(16) Jan säit das mer NP* es huus haend wele \(V^{*}\) aastrüche Jan said that we NP* the house have wanted \(V^{*}\) paint 'Jan said that we have wanted (that) \(\mathrm{V}^{*} \mathrm{NP}^{*}\) paint the house'
2. Among those subordinate clauses, those where all the dative NPs precede all the accusative NPs are well-formed. (17)
... das mer d'chind em Hans es hus haend wele laa hälfe aastrüche
\(\ldots\) that we the children.acc Hans. Dat the house.acc have wanted let help paint Sorbonne
'... that we have wanted to let the children help Hans to paint the house' Nouvelle
```

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

Final argument II

3. The number of verbs requiring a dative has to be equal to the number of dative NPs, the same for accusative.
4. The number of verbs in a subordinate clause is limited only by performance
Let R be the language:
$\mathrm{R}=\left\{\right.$ Jan säit das mer $\left(\mathrm{d}^{\prime} \text { chind }\right)^{h}$ (em Hans) ${ }^{i}$ es huus haend wele (laa) ${ }^{j}$ (hälfe) ${ }^{k}$ aastrüche,
$i, j, k, h \geqslant 1\}$
Then let $L=$ Swiss-German $\cap R=$
$\left\{J a n\right.$ säit das mer (d'chind) ${ }^{m}$ (em Hans) ${ }^{n}$ es huus haend wele (laa) ${ }^{m}$ (hälfe) n aastrüche, $\left.m, n \geqslant 1\right\}$
L is not context-free, whereas R is regular.

Overview

Formal Languages

Regular Languages

Formal Grammars

Formal complexity of Natural Languages
Introduction
Are NL regular?
Are NL context-free?
Are NL context-sensitive?

Current proposal

1. The context-sensitive class seems too big: for instance $\left\{a^{2^{i}} / i \geqslant 0\right\}$ is context-sensitive.
2. Joshi (1985) proposed a subclass of type 1 languages, namely the class of mildly context-sensitive languages (MCSL), this class has the following properties:

- ww is MCS
- $a^{n} b^{n} c^{n}$ is MCS
- $a^{n} b^{n} c^{n} d^{n}$ is MCS
- $a^{i} b^{j} c^{i} d^{j}$ is MCS
- $a^{n} b^{n} c^{n} d^{n} e^{n}$ is not MCS
- www is not MCS
- $a b^{h} a b^{i} a b^{j} a b^{k} a b^{\prime}, h>i>j>k>l \geqslant 1$ is not MCS
- $a^{2^{i}}$ is not MCS

Current proposal

1. The context-sensitive class seems too big: for instance $\left\{a^{2^{i}} / i \geqslant 0\right\}$ is context-sensitive.
2. Joshi (1985) proposed a subclass of type 1 languages, namely the class of mildly context-sensitive languages (MCSL), this class has the following properties:

- ww is MCS
- $a^{n} b^{n} c^{n}$ is MCS
- $a^{n} b^{n} c^{n} d^{n}$ is MCS
- $a^{i} b^{j} c^{i} d^{j}$ is MCS
- $a^{n} b^{n} c^{n} d^{n} e^{n}$ is not MCS
- www is not MCS
- $a b^{h} a b^{i} a b^{j} a b^{k} a b^{\prime}, h>i>j>k>l \geqslant 1$ is not MCS
- $a^{2^{i}}$ is not MCS

More about MCSL

Interesting properties of MCSL:

- restricted growth: if L is MCS, there is k such that for all words $w \in L$, there is a word w^{\prime} s.t. $\left|w^{\prime}\right| \leqslant|w|+k$
- word problem for MCSL are of a polynomial complexity

These properties are arguably common with natural languages

The formalism introduced by Joshi, Tree Adjoining Grammars, defines the class of MCSL.

Are NL context-sensitive?

Minimalist grammars (Stabler, 2011)

Minimalist grammars (MGs), as defined here by (5), (6) and (8), have been studied rather carefully. It has been demonstrated that the class of languages definable by minimalist grammars is exactly the class definable by multiple context free grammars (MCFGs), linear context free rewrite systems (LCFRSs), and other formalisms [62,64,66,41]. MGs contrast in this respect with some other much more powerful grammatical formalisms (notably, the 'Aspects' grammar studied by Peters and Ritchie [76], and HPSG and LFG $[5,46,101]$):

The MG definable languages include all the finite (Fin), regular (Reg), and context free languages (CF), and are properly included in the context sensitive (CS), recursive (Rec), and recursively enumerable languages (RE). Languages definable by tree adjoining grammar (TAG) and by a certsoifbonne YF
categorial combinatory grammar (CCG) were shown by vijay Shanker anouvelle FY Weir to be sandwiched inside the MG class [103]. ${ }^{4}$ With all these results,

Theorem 1. $C F \subset \widehat{T A G \equiv C C G} \subset \widehat{M C F G \equiv L C F R S \equiv M G} \subset C S$

References I

Bar-Hillel, Yehoshua, Perles, Micha, \& Shamir, Eliahu. 1961. On formal properties of simple phrase structure grammars. STUF-Language Typology and Universals, 14(1-4), 143-172.
Chomsky, Noam. 1957. Syntactic Structures. Den Haag: Mouton \& Co.
Gazdar, Gerald, \& Pullum, Geoffrey K. 1985 (May). Computationally Relevant Properties of Natural Languages and Their Grammars. Tech. rept. Center for the Study of Language and Information, Leland Stanford Junior University.

Gibson, Edward, \& Thomas, James. 1997. The Complexity of Nested Structures in English: Evidence for the Syntactic Prediction Locality Theory of Linguistic Complexity. Unpublished manuscript, Massachusetts Institute of Technology.
Joshi, Aravind K. 1985. Tree Adjoining Grammars: How Much Context-Sensitivity is Required to Provide Reasonable Structural Descriptions? Tech. rept. Department of Computer and Information Science, University of Pennsylvania.
Langendoen, D Terence, \& Postal, Paul Martin. 1984. The vastness of natural languages. Basil Blackwell Oxford.
Mannell, Robert. 1999. Infinite number of sentences. part of a set of class notes on the Internet. http://clas.mq.edu.au/speech/infinite_sentences/.
Schieber, Stuart M. 1985. Evidence against the Context-Freeness of Natural Language. Linguistics and Philosophy, 8(3), 333-343.
Stabler, Edward P. 2011. Computational perspectives on minimalism. Oxford handbook of linguistic minimalism, 617-643.

