# Formal Languages and Linguistics 

Pascal Amsili

Sorbonne Nouvelle, Lattice (CNRS/ENS-PSL/SN)

Cogmaster, september 2021

## General introduction

1. Mathematicians (incl. Chomsky) have formalized the notion of language It might be thought of as an oversimplification, always the same story...
2. It buys us:
2.1 Tools to think about theoretical issues about language/s (expressiveness, complexity, comparability...)
2.2 Tools to manipulate concretely language (e.g. with computers)
2.3 A research programme:

- Represent the syntax of natural language in a fully unambiguously specified way

Now let's get familiar with the mathematical notion of langubige

## Overview

Formal Languages

## Basic concepts

Definition
Questions

Regular Languages

Formal Grammars

Formal complexity of Natural Languages

## Alphabet, word

## Def. 1 (Alphabet)

An alphabet $\Sigma$ is a finite set of symbols (letters).
The size of the alphabet is the cardinal of the set.
Def. 2 (Word)
A word on the alphabet $\Sigma$ is a finite sequence of letters from $\Sigma$. Formally, let $[p]=(1,2,3,4, \ldots, p)$ (ordered integer sequence). Then a word is a mapping

$$
u:[p] \longrightarrow \Sigma
$$

$p$, the length of $u$, is noted $|u|$.

```
Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

\section*{Examples I \\ Alphabet \(\{\boldsymbol{\bullet}, \boldsymbol{-}\}\) \\ Words \\ }

Alphabet \｛－＿，－．．．，＿－－• ，－．．，．，．．．\}
Words
＿•••－••・ー・ ーーー ー
－－＿…＿… •－•－－…＿… •－
```

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

## Examples II

| Alphabet | $\{0,1,2,3,4,5,6,7,8,9, \cdot\}$ |
| :--- | :--- |
| Words | $235 \cdot 29$ |
|  | $007 \cdot 12$ |
|  | $\cdot 1 \cdot 1 \cdot 00 \cdots$ |
|  | $3 \cdot 1415962 \ldots(\pi)$ |

Alphabet \{a, woman, loves, man \}
Words a
a woman loves a woman
man man a loves woman loves a

## Monoid

## Def. 3 ( $\Sigma^{*}$ )

Let $\Sigma$ be an alphabet.
The set of all the words that can be formed with any number of letters from $\Sigma$ is noted $\Sigma^{*}$
$\Sigma^{*}$ includes a word with no letter, noted $\varepsilon$
Example: $\quad \Sigma=\{a, b, c\}$ $\Sigma^{*}=\{\varepsilon, a, b, c, a a, a b, a c, b a, \ldots, b b b, \ldots\}$
N.B.: $\Sigma^{*}$ is always infinite, except...

## Monoid

## Def. 3 ( $\Sigma^{*}$ )

Let $\Sigma$ be an alphabet.
The set of all the words that can be formed with any number of letters from $\Sigma$ is noted $\Sigma^{*}$
$\Sigma^{*}$ includes a word with no letter, noted $\varepsilon$
Example: $\quad \Sigma=\{a, b, c\}$ $\Sigma^{*}=\{\varepsilon, a, b, c, a a, a b, a c, b a, \ldots, b b b, \ldots\}$
N.B.: $\Sigma^{*}$ is always infinite, except...

$$
\text { if } \Sigma=\emptyset \text {. Then } \Sigma^{*}=\{\varepsilon\} \text {. }
$$

```
Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

\section*{Structure of \(\Sigma^{*}\)}

Let \(k\) be the size of the alphabet \(k=|\Sigma|\).

Then \(\Sigma^{*}\) contains : \(k^{0}=1 \quad\) word(s) of 0 letters \((\varepsilon)\)
\(k^{1}=k \quad \operatorname{word}(\mathrm{~s})\) of 1 letters
\(k^{2} \quad \operatorname{word}(s)\) of 2 letters
\(k^{n} \quad\) words of \(n\) letters, \(\forall n \geq 0\)
```

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

## Representation of $\Sigma^{*}$

$$
\Sigma=\{a, b, c\}
$$



- Words can be enumerated according to different orders
- $\Sigma^{*}$ is a countable set


## Concatenation

$\Sigma^{*}$ can be equipped with a binary operation: concatenation
Def. 4 (Concatenation)
Let $[p] \xrightarrow{u} \Sigma,[q] \xrightarrow{w} \Sigma$. The concatenation of $u$ and $w$, noted uw (u.w) is thus defined:

$$
\begin{aligned}
u w: & {[p+q] \longrightarrow \Sigma } \\
& u w_{i}=\left\{\begin{array}{lll}
u_{i} & \text { for } & i \in[1, p] \\
w_{i-p} & \text { for } & i \in[p+1, p+q]
\end{array} . \begin{array}{ll}
\end{array}\right]
\end{aligned}
$$

## Concatenation

$\Sigma^{*}$ can be equipped with a binary operation: concatenation
Def. 4 (Concatenation)
Let $[p] \xrightarrow{u} \Sigma,[q] \xrightarrow{w} \Sigma$. The concatenation of $u$ and $w$, noted uw (u.w) is thus defined:

$$
\begin{array}{rlll}
u w: & {[p+q] \longrightarrow \Sigma} & & \\
& u w_{i}=\left\{\begin{array}{lll}
u_{i} & \text { for } & i \in[1, p] \\
w_{i-p} & \text { for } & i \in[p+1, p+q]
\end{array}\right.
\end{array}
$$

Example: $u$ bacba
v cca

## Concatenation

$\Sigma^{*}$ can be equipped with a binary operation: concatenation
Def. 4 (Concatenation)
Let $[p] \xrightarrow{u} \Sigma,[q] \xrightarrow{w} \Sigma$. The concatenation of $u$ and $w$, noted uw (u.w) is thus defined:

$$
\begin{array}{rlll}
u w: & {[p+q] \longrightarrow \Sigma} & & \\
& u w_{i}=\left\{\begin{array}{lll}
u_{i} & \text { for } & i \in[1, p] \\
w_{i-p} & \text { for } & i \in[p+1, p+q]
\end{array}\right.
\end{array}
$$

Example: $u$ bacba
$v \quad$ cca
uv bacbacca

```
Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

\section*{Factor}

Def. 5 (Factor)
A factor \(w\) of \(u\) is a subset of adjascent letters in \(u\).
\(-w\) is a factor of \(u\)
\(-w\) is a left factor (prefix) of \(u \Leftrightarrow \exists u_{2}\) s.t. \(u=w u_{2}\)
\(-w\) is a right factor (suffix) of \(u \Leftrightarrow \exists u_{1}\) s.t. \(u=u_{1} w\)

Def. 6 (Factorization)
We call factorization the decomposition of a word into factors.
```

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

## Role of concatenation

1. Words have been defined on $\Sigma$.

If one takes two such words, it's always possible to form a new word by concatenating them.
2. Any word can be factorised in many different ways: $a b a c c a b$

```
Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

\section*{Role of concatenation}
1. Words have been defined on \(\Sigma\).

If one takes two such words, it's always possible to form a new word by concatenating them.
2. Any word can be factorised in many different ways:
\(a b a c c a b\) \((a b a)(\subset \subset a b)\)
```

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

## Role of concatenation

1. Words have been defined on $\Sigma$.

If one takes two such words, it's always possible to form a new word by concatenating them.
2. Any word can be factorised in many different ways:
$a b a c c a b$
$\left.(a b)(\operatorname{a} c c))^{b}\right)$

```
Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

\section*{Role of concatenation}
1. Words have been defined on \(\Sigma\).

If one takes two such words, it's always possible to form a new word by concatenating them.
2. Any word can be factorised in many different ways:
\(a b a c c a b\) \(\left.(a b a c c))^{a}\right)\)
```

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

## Role of concatenation

1. Words have been defined on $\Sigma$.

If one takes two such words, it's always possible to form a new word by concatenating them.
2. Any word can be factorised in many different ways:
$a b a c c a b$ $(a)(b)(\varepsilon)(\varepsilon)(a)(b)$

## Role of concatenation

1. Words have been defined on $\Sigma$.

If one takes two such words, it's always possible to form a new word by concatenating them.
2. Any word can be factorised in many different ways:
$a b a c c a b$
$(a)(b)(E)(E)()(b)$
3. Since all letters of $\Sigma$ form a word of length 1 (this set of words is called the base),
4. any word of $\sum^{*}$ can be seen as a (unique) sequence of concatenations of length 1 words:
$a b a c c a b$
( ((( ((ab)a)c)c)a)b) $(((((a \cdot b) \cdot a) \cdot c) \cdot c) \cdot a) \cdot b)$

```
Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

\section*{Properties of concatenation}
1. Concatenation is non commutative
2. Concatenation is associative
3. Concatenation has an identity (neutral) element: \(\varepsilon\)
\[
\begin{aligned}
& \text { 1. } u v \cdot w \neq w \cdot u v \\
& \text { 2. }(u \cdot v) \cdot w=u \cdot(v \cdot w) \\
& \text { 3. } u \cdot \varepsilon=\varepsilon \cdot u=u
\end{aligned}
\]

Notation: a.a.a \(=a^{3}\)
```

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

## Overview

Formal Languages
Basic concepts

## Definition

## Questions

Regular Languages

Formal Grammars

Formal complexity of Natural Languages

## Language

## Def. 7 (Formal Language)

Let $\Sigma$ be an alphabet.
A language on $\Sigma$ is a set of words on $\Sigma$.

## Language

Def. 7 (Formal Language)
Let $\Sigma$ be an alphabet.
A language on $\Sigma$ is a set of words on $\Sigma$.
or, equivalently,
A language on $\Sigma$ is a subset of $\Sigma^{*}$

## Definition

## Examples I

Let $\Sigma=\{a, b, c\}$.

## Examples I

$$
\text { Let } \Sigma=\{a, b, c\} \text {. }
$$

$$
L_{1}=\{a a, a b, b a c\}
$$

finite language

## Examples I

$$
\text { Let } \Sigma=\{a, b, c\} \text {. }
$$

$$
\begin{array}{ll}
L_{1}=\{a a, a b, b a c\} & \text { finite language } \\
\hline L_{2}=\{a, a a, a a a, a a a a \ldots\} &
\end{array}
$$

## Examples I

$$
\text { Let } \Sigma=\{a, b, c\} \text {. }
$$

$$
\begin{array}{rlr}
L_{1}=\{a a, a b, b a c\} & \text { finite language } \\
\hline L_{2}= & \{a, a a, a a a, a a a a \ldots\} \\
& \text { or } L_{2}=\left\{a^{i} / i \geq 1\right\} & \text { infinite language }
\end{array}
$$

```
Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

\section*{Examples I}
\[
\text { Let } \Sigma=\{a, b, c\} \text {. }
\]
\[
\begin{array}{ll}
L_{1}=\{a a, a b, b a c\} & \text { finite language } \\
\hline L_{2}=\{a, a a, a a a, a a a a \ldots\} & \\
\quad \text { or } L_{2}=\left\{a^{i} / i \geq 1\right\} & \text { infinite language } \\
\hline L_{3}=\{\varepsilon\} & \begin{array}{l}
\text { finite language, } \\
\\
\\
\end{array} \text { reduced to a singleton }
\end{array}
\]

\section*{Examples I}
\[
\text { Let } \Sigma=\{a, b, c\} \text {. }
\]
\begin{tabular}{ll}
\(L_{1}=\{a a, a b, b a c\}\) & finite language \\
\hline\(L_{2}=\{a, a a, a a a, a a a a \ldots\}\) \\
o \(L_{2}=\left\{a^{i} / i \geq 1\right\}\) & infinite language \\
\hline\(L_{3}=\{\varepsilon\}\) & \begin{tabular}{l} 
finite language \\
reduced to a singleton
\end{tabular} \\
\hline & \(\neq\)
\end{tabular}
```

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

## Examples I

$$
\text { Let } \Sigma=\{a, b, c\} \text {. }
$$

| $L_{1}=\{a a, a b, b a c\}$ | finite language |
| :--- | :--- |
| $L_{2}=\{a, a a, a a a, a a a a \ldots\}$ |  |
| or $L_{2}=\left\{a^{i} / i \geq 1\right\}$ | infinite language |
| $L_{3}=\{\varepsilon\}$ | finite language, <br> reduced to a singleton |
| $L_{4}=\emptyset$ | $\neq$ |
| "empty" language |  |

## Examples I

$$
\text { Let } \Sigma=\{a, b, c\} \text {. }
$$

| $L_{1}=\{a a, a b, b a c\}$ | finite language |
| :--- | :--- |
| $L_{2}=\{a, a a, a a a, a a a a \ldots\}$ | in |
| or $L_{2}=\left\{a^{i} / i \geq 1\right\}$ | infinite language |
| $L_{3}=\{\varepsilon\}$ | finite language, <br> reduced to a singleton |
| $L_{4}=\emptyset$ | $\neq$ |
| $L_{5}=\Sigma^{*}$ | "empty" language |

```
Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

\section*{Examples II}

Let \(\Sigma=\{\) a, man, loves, woman \(\}\).
```

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

## Examples II

Let $\Sigma=\{$ a, man, loves, woman $\}$.
$L=\{$ a man loves a woman, a woman loves a man $\}$

## Examples II

Let $\Sigma=\{$ a, man, loves, woman $\}$.
$L=\{$ a man loves a woman, a woman loves a man $\}$

Let $\Sigma^{\prime}=\{\mathrm{a}$, man, who, saw, fell $\}$.

## Examples II

Let $\Sigma=\{$ a, man, loves, woman $\}$.
$L=\{$ a man loves a woman, a woman loves a man $\}$

Let $\Sigma^{\prime}=\{\mathrm{a}$, man, who, saw, fell $\}$.
$L^{\prime}=\left\{\begin{array}{l}\text { a man fell, } \\ \text { a man who saw a man fell, } \\ \text { a man who saw a man who saw a man fell, } \\ \ldots\end{array}\right\}$

```
Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

\section*{Set operations}

Since a language is a set, usual set operations can be defined:
- union
- intersection
- set difference
```

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

## Set operations

Since a language is a set, usual set operations can be defined:

- union
- intersection
- set difference
$\Rightarrow$ One may describe a (complex) language as the result of set operations on (simpler) languages:
$\left\{a^{2 k} / k \geqslant 1\right\}=\{a$, aa, aaa, aaaa,$\ldots\} \cap\left\{w w / w \in \Sigma^{*}\right\}$


## Additional operations

Def. 8 (product operation on languages)
One can define the language product and its closure the Kleene star operation:

- The product of languages is thus defined:

$$
L_{1} \cdot L_{2}=\left\{u v / u \in L_{1} \& v \in L_{2}\right\}
$$

Notation: $\overbrace{\text { L.L.L...LL }}^{k \text { times }}=L^{k} ; L^{0}=\{\varepsilon\}$

- The Kleene star of a language is thus defined:

$$
L^{*}=\bigcup_{n \geqslant 0} L^{n}
$$

```
Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

\section*{Regular expressions}

It is common to use the 3 rational operations:
- union
- product
- Kleene star
to characterize certain languages...

\section*{Regular expressions}

It is common to use the 3 rational operations:
\(\rightarrow\) union
- product
- Kleene star
to characterize certain languages...
\((\{a\} \cup\{b\})^{*} \cdot\{c\}=\{c, a c, a b c, b c, \ldots\), baabaac, \(\ldots\}\)
(simplified notation \((a \mid b)^{*} c\) - regular expressions)

\section*{Regular expressions}

It is common to use the 3 rational operations:
- union
- product
- Kleene star
to characterize certain languages...
\((\{a\} \cup\{b\})^{*} \cdot\{c\}=\{c, a c, a b c, b c, \ldots\), baabaac,\(\ldots\}\)
(simplified notation \((a \mid b)^{*} c\) - regular expressions)
... but not all languages can be thus characterized.
```

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

## Overview

Formal Languages
Basic concepts
Definition

## Questions

Regular Languages

Formal Grammars

Formal complexity of Natural Languages

## Back to "Natural" Languages

English as a formal language:
alphabet: morphemes (often simplified to words -depending on your view on flexional morphology)
$\Rightarrow$ Finite at a time $t$ by hypothesis
words: well formed English sentences
$\Rightarrow$ English sentences are all finite by hypothesis
language: English, as a set of an infinite number of well formed combinations of "letters" from the alphabet

## Discussion I

1. is the alphabet finite?
closed class morphemes obviously open class morphemes what about "new words'?
morphological derivations can be seen as produced from an unchanged inventory (1)
other words loan words (rare)

- lexical inventions (rare)
- change of category (2) (bounded)
$\Rightarrow$ negligable
(1) motherese $=$ mother + ese

```
Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

\section*{Discussion II}
(2) american \(_{A} \rightarrow\) american \(_{N}\)
2. is English infinite ?
- It is supposed that you can always profer a longer sentence than the previous one by adding linguistic material preserving well-formedness.
- Compatible with the working memory limit
(Langendoen \& Postal, 1984)
3. is language discrete?

Well, that's another story
```

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

## About infinity

Linguists sometimes have trouble with infinity:
In order for there to be an infinite number of sentences in a language there must either be an infinite number of words in the language (clearly not true) or there must be the possibility of infinite length sentences. The product of two finite numbers is always a finite number.
(Mannell, 1999)
and many others

```
Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

\section*{About infinity}

Linguists sometimes have trouble with infinity:
In order for there to be an infinite number of sentences in a
tanguage there must either be an infinite number of words
in the language (clearly not true) or there must be the possibility of infinite length sentences. The product of two finite numbers
is always a finite number.
(Mannell, 1999) and many others
!! WRONG !!
```

Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

## About infinity

Linguists sometimes have trouble with infinity:
In order for there to be an infinite number of sentences in a
language there must either be an infinite number of words
in the language (clearly not true) or there must be the possibility
of infinite length sentences. The product of two finite numbers
is always a finite number.
(Mannell, 1999) and many others
!! WRONG !!
The whole point of formal languages is that they are infinite sets of finite words on a finite alphabet.

## About infinity

Linguists sometimes have trouble with infinity:
In order for there to be an infinite number of sentences in a
language there must either be an infinite number of words
in the language (clearly not true) or there must be the possibility
of infinite length sentences. The product of two finite numbers
is always a finite number.
(Mannell, 1999) and many others
!! WRONG !!
The whole point of formal languages is that they are infinite sets of finite words on a finite alphabet.
von Humbolt: language is an infinite use of finite means
(quoted by Chomsky)

## Good questions

Why would one consider natural language as a formal language?

- it allows to describe the language in a formal/compact/elegant way
- it allows to compare various languages (via classes of languages established by mathematicians)
- it give algorithmic tools to recognize and to analyse words of a language.

```
recognize \(u\) : decide whether \(u \in L\) analyse \(u\) : show the internal structure of \(u\)
```

```
Formal Languages Regular Languages Formal Grammars Formal complexity of Natural Languages References

\section*{Overview}

Formal Languages

Regular Languages
Definition
Automata
Properties

Formal Grammars

Formal complexity of Natural Languages

\section*{Definition}

3 possible definitions
1. a regular language can be generated by a regular grammar
2. a regular language can be defined by rational expressions
3. a regular language can be recognized by a finite automaton

Def. 9 (Rational Language)
A rational language on \(\Sigma\) is a subset of \(\Sigma^{*}\) inductively defined thus:
- \(\emptyset\) and \(\{\varepsilon\}\) are rational languages;
- for all \(a \in X\), the singleton \(\{a\}\) is a rational language ;
- for all \(g\) and \(h\) rational, the sets \(g \cup h, g . h\) and \(g^{*}\) are rational languages.

\section*{Overview}

Formal Languages

Regular Languages
Definition
Automata
Properties

Formal Grammars

Formal complexity of Natural Languages

\section*{Automata}

\section*{Metaphoric definition}


\section*{Formal definition}

Def. 10 (Finite deterministic automaton (FDA))
A finite state deterministic automaton \(\mathcal{A}\) is defined by :
\[
\mathcal{A}=\left\langle Q, \Sigma, q_{0}, F, \delta\right\rangle
\]
\(Q\) is a finite set of states
\(\Sigma\) is an alphabet
\(q_{0}\) is a distinguished state, the initial state,
\(F\) is a subset of \(Q\), whose members are called final/terminal states
\(\delta\) is a mapping fonction from \(Q \times \Sigma\) to \(Q\). Notation \(\delta(q, a)=r\).

\section*{Example}

Let us consider the (finite) language \(\{a a, a b, a b b, a c b a, a c c b\}\). The following automaton recognizes this langage: \(\left\langle Q, \Sigma, q_{0}, F, \delta\right\rangle\), avec \(Q=\{1,2,3,4,5,6,7\}, \Sigma=\{a, b, c\}, q_{0}=1, F=\{3,4\}\), and \(\delta\) is thus defined:
\[
\begin{aligned}
\delta: \quad(1, a) & \mapsto 2 \\
(2, a) & \mapsto 3 \\
(2, b) & \mapsto 4 \\
(2, c) & \mapsto 5 \\
(4, b) & \mapsto 3 \\
(5, b) & \mapsto 6 \\
(5, c) & \mapsto 7 \\
(6, a) & \mapsto 3 \\
(7, b) & \mapsto 3
\end{aligned}
\]

\begin{tabular}{r|r|r|r|} 
& a & b & c \\
\hline\(\rightarrow 1\) & 2 & & \\
\hline 2 & 3 & 4 & 5 \\
\hline\(\leftarrow 3\) & & & \\
\hline\(\leftarrow 4\) & & 3 & \\
\hline 5 & & 6 & 7 \\
\hline 6 & 3 & & \\
\hline 7 & & 3 & \multicolumn{1}{|c}{\begin{tabular}{r} 
Sorbonne \\
Nouvelle
\end{tabular}} \\
\hline
\end{tabular}

\section*{Recognition}

Recognition is defined as the existence of a sequence of states defined in the following way. Such a sequence is called a path in the automaton.

\section*{Def. 11 (Recognition)}

A word \(a_{1} a_{2} \ldots a_{n}\) is recognized/accepted by an automaton iff there exists a sequence \(k_{0}, k_{1}, \ldots, k_{n}\) of states such that:
\[
\begin{aligned}
& k_{0}=q_{0} \\
& k_{n} \in F \\
& \forall i \in[1, n], \quad \delta\left(k_{i-1}, a_{i}\right)=k_{i}
\end{aligned}
\]

\section*{Automata}

\section*{Example}


\section*{Exercices}

Let \(\Sigma=\{a, b, c\}\). Give deterministic finite state automata that accept the following languages:
1. The set of words with an even length.
2. The set of words where the number of occurrences of \(b\) is divisible by 3 .
3. The set of words ending with a \(b\).
4. The set of words not ending with \(a b\).
5. The set of words non empty not ending with a \(b\).
6. The set of words comprising at least a \(b\).
7. The set of words comprising at most a \(b\).
8. The set of words comprising exactly one \(b\).```

