Formal Languages and Linguistics

Pascal Amsili

Sorbonne Nouvelle, Lattice (CNRS/ENS-PSL/SN)

Cogmaster, september 2021

Sorbonne III Nouvelle

1/110

Formal Languages	Regular Languages	Formal Grammars	Formal complexity of Natural Languages	References
000000000	00	000000000000000000000000000000000000000	0.0000000	
0000000	00000000 00000000000000	00000000	0000000 00000000 0	
			0000	

General introduction

1. Mathematicians (incl. Chomsky) have formalized the notion of language It might be thought of as an

oversimplification, always the same story...

2. It buys us:

- 2.1 Tools to think about theoretical issues about language/s (expressiveness, complexity, comparability...)
- 2.2 Tools to manipulate concretely language (e.g. with computers)
- 2.3 A research programme:
 - Represent the syntax of natural language in a fully unambiguously specified way

Now let's get familiar with the mathematical notion of langyageonne provide the second second

Formal Languages •••••••• •••••• •••••• •••••	Regular Languages 00 00000000 0000000000000000	Formal Grammars	References
Basic concepts			
Busic concepts			

Overview

> Formal Languages Basic concepts Definition Questions

> Regular Languages

Formal Grammars

Formal complexity of Natural Languages

0000000 00000000 00000000 00000000 00000 000000	
Basic concepts	

Alphabet, word

Def. 1 (Alphabet)

An alphabet Σ is a finite set of symbols (letters). The *size* of the alphabet is the cardinal of the set.

Def. 2 (Word)

A word on the alphabet Σ is a finite sequence of letters from Σ . Formally, let [p] = (1, 2, 3, 4, ..., p) (ordered integer sequence). Then a word is a *mapping*

$$u:[p]\longrightarrow \Sigma$$

p, the length of u, is noted |u|.

Sorbonne ;;; Nouvelle ;;;

4/110

Formal Languages 00●0000000 000000 00000	Regular Languages 00 00000000 0000000000000000	Formal Grammars Formal complexity of Natural Languages 000000000000000000000000000000000000	References
Basic concepts			
Examples Alphab Words Alphabe Words	et {.,_}}	· , , • , } ·	

Formal Languages ○○●○○○○○○○ ○○○○○○○ ○○○○○○	Regular Languages 00 00000000 00000000000000000	Formal Grammars	Formal complexity of Natural Languages ©©©©©©©© ©©©©©©©©©©©©©©©©©©©©©©©©©©	References
Basic concepts				

Alphabet	$\{0,1,2,3,4,5,6,7,8,9,\cdot\}$
Words	235 · 29
	007 · 12
	$\cdot 1 \cdot 1 \cdot 00 \cdot \cdot$
	$3 \cdot 1415962 \dots (\pi)$
-	$\{a, woman, loves, man \}$
Words	а
	a woman loves a woman
	man man a loves woman loves a

Formal Languages	Regular Languages 00 00000000 0000000000000000	Formal Grammars	Formal complexity of Natural Languages communication cococococo cococococo cococococo cocococo	References
Basic concepts				

Monoid

Def. 3 (Σ^*)

Let Σ be an alphabet.

The set of all the words that can be formed with any number of letters from Σ is noted Σ^*

 Σ^* includes a word with no letter, noted ε

Example: $\Sigma = \{a, b, c\}$ $\Sigma^* = \{\varepsilon, a, b, c, aa, ab, ac, ba, \dots, bbb, \dots\}$

N.B.: Σ^* is always infinite, except...

Sorbonne ;;; Nouvelle ;;;

Formal Languages	Regular Languages 00 00000000 0000000000000000	Formal Grammars	References
Basic concepts			

Monoid

Def. 3 (Σ^*)

Let Σ be an alphabet.

The set of all the words that can be formed with any number of letters from Σ is noted Σ^*

 Σ^* includes a word with no letter, noted ε

Example: $\Sigma = \{a, b, c\}$ $\Sigma^* = \{\varepsilon, a, b, c, aa, ab, ac, ba, \dots, bbb, \dots\}$

N.B.: Σ^* is always infinite, except... if $\Sigma = \emptyset$. Then $\Sigma^* = \{\varepsilon\}$.

Formal Languages 0000●00000 000000 00000	Regular Languages 00 00000000 0000000000000000	Formal Grammars	Formal complexity of Natural Languages	References
Basic concepts				

Structure of Σ^\ast

Let k be the size of the alphabet $k = |\Sigma|$.

Then
$$\Sigma^*$$
 contains : $k^0 = 1$ word(s) of 0 letters (ε)
 $k^1 = k$ word(s) of 1 letters
 k^2 word(s) of 2 letters
...
 k^n words of *n* letters, $\forall n \ge 0$

Basic concepts

Representation of Σ^{\ast}

Words can be enumerated according to different orders
 Σ* is a *countable* set

Sorbonne III Nouvelle

Concatenation

 Σ^* can be equipped with a binary operation: *concatenation* Def. 4 (Concatenation) Let $[p] \xrightarrow{u} \Sigma$, $[q] \xrightarrow{w} \Sigma$. The concatenation of u and w, noted uw (u.w) is thus defined:

$$egin{array}{lll} uw:&[p+q]\longrightarrow \Sigma\ &uw_i=\left\{egin{array}{lll} u_i& ext{for}&i\in [1,p]\ &w_{i-p}& ext{for}&i\in [p+1,p+q] \end{array}
ight.$$

Sorbonne III Nouvelle

Concatenation

 Σ^* can be equipped with a binary operation: *concatenation* Def. 4 (Concatenation) Let $[p] \xrightarrow{u} \Sigma$, $[q] \xrightarrow{w} \Sigma$. The concatenation of u and w, noted uw (u.w) is thus defined:

$$egin{array}{lll} uw:&[p+q]\longrightarrow \Sigma\ &uw_i=\left\{egin{array}{lll} u_i& ext{for}&i\in [1,p]\ &w_{i-p}& ext{for}&i\in [p+1,p+q] \end{array}
ight.$$

Example : *u* bacba

v cca

Sorbonne ;;; Nouvelle ;;;

Concatenation

 Σ^* can be equipped with a binary operation: *concatenation* Def. 4 (Concatenation) Let $[p] \xrightarrow{u} \Sigma$, $[q] \xrightarrow{w} \Sigma$. The concatenation of u and w, noted uw (u.w) is thus defined:

$$egin{array}{lll} uw:&[p+q]\longrightarrow \Sigma\ &uw_i=\left\{egin{array}{lll} u_i& ext{for}&i\in [1,p]\ &w_{i-p}& ext{for}&i\in [p+1,p+q] \end{array}
ight.$$

Example : *u* bacba

- v cca
- uv bacbacca

Sorbonne ;;; Nouvelle ;;;

Formal Languages 0000000000 000000 000000 00000	Regular Languages 00 00000000 000000000000000000000000	Formal Grammars	References
Basic concepts			
Factor			

Def. 5 (Factor) A factor w of u is a subset of adjascent letters in u. -w is a factor of u $\Leftrightarrow \exists u_1, u_2 \text{ s.t. } u = u_1wu_2$ -w is a left factor (prefix) of u $\Leftrightarrow \exists u_2 \text{ s.t. } u = wu_2$ -w is a right factor (suffix) of u $\Leftrightarrow \exists u_1 \text{ s.t. } u = u_1w$

Def. 6 (Factorization)

We call *factorization* the decomposition of a word into factors.

Sorbonne III Nouvelle III

Formal Languages 000000000 0000000 000000 00000	Regular Languages 00 00000000 0000000000000000	Formal Grammars	Formal complexity of Nature CONTRACTOR CONTRA	iral Languages	References
Basic concepts					

1. Words have been defined on $\boldsymbol{\Sigma}.$

If one takes two such words, it's always possible to form a new word by concatenating them.

2. Any word can be factorised in many different ways: *a b a c c a b*

Formal Languages 000000000 0000000 000000 00000	Regular Languages 00 00000000 0000000000000000	Formal Grammars	Formal complexity of Natural Languages	References
Basic concepts				

1. Words have been defined on $\boldsymbol{\Sigma}.$

If one takes two such words, it's always possible to form a new word by concatenating them.

2. Any word can be factorised in many different ways:

a b a c c a b (a b a)(c c a b)

Formal Languages 000000000 0000000 000000 00000	Regular Languages 00 00000000 0000000000000000	Formal Grammars	Formal complexity of Natural Languages	References
Basic concepts				

1. Words have been defined on Σ .

If one takes two such words, it's always possible to form a new word by concatenating them.

2. Any word can be factorised in many different ways:

a b a c c a b (a b)(a c c)(a b)

Formal Languages 000000000 0000000 000000 00000	Regular Languages 00 00000000 0000000000000000	Formal Grammars	Formal complexity of Natural Languages	References
Basic concepts				

1. Words have been defined on $\boldsymbol{\Sigma}.$

If one takes two such words, it's always possible to form a new word by concatenating them.

2. Any word can be factorised in many different ways:

a b a c c a b (a b a c c)(a b)

Formal Languages 000000000 0000000 000000 00000	Regular Languages 00 00000000 0000000000000000	Formal Grammars	Formal complexity of Natural Languages	References
Basic concepts				

1. Words have been defined on Σ .

If one takes two such words, it's always possible to form a new word by concatenating them.

2. Any word can be factorised in many different ways:

a b a c c a b (a)(b)(b)(c)(b)(b)

Formal Languages 0000000000 0000000 000000 00000	Regular Languages 00 00000000 0000000000000000	Formal Grammars	Formal complexity of Natural Languages	References
Basic concepts				

1. Words have been defined on Σ .

If one takes two such words, it's always possible to form a new word by concatenating them.

- 2. Any word can be factorised in many different ways:
 a b a c c a b
 (a)b(a)c(b(b)b)
- Since all letters of Σ form a word of length 1 (this set of words is called the *base*),
- 4. any word of Σ^* can be seen as a (unique) sequence of concatenations of length 1 words :

a b a c c a b ((((((ab)a)c)c)a)b) (((((((a.b).a).c).c).a).b)

Sorbonne ;;; Nouvelle ;;;

Formal Languages 00000000● 000000 00000	Regular Languages 00 00000000 0000000000000000	Formal Grammars	Formal complexity of Natural Languages 000000000 000000000 000000000 0000	References
Basic concepts				

Properties of concatenation

- 1. Concatenation is non commutative
- 2. Concatenation is associative
- 3. Concatenation has an identity (neutral) element: ε

1.
$$uv.w \neq w.uv$$

2. $(u.v).w = u.(v.w)$
3. $u.\varepsilon = \varepsilon.u = u$

Notation : $a.a.a = a^3$

Sorbonne III Nouvelle III

Formal Languages ●○○○○○○○ ●○○○○○ ○○○○○	Regular Languages 00 00000000 00000000000000000	Formal Grammars	Formal complexity of Natural Languages	References
Definition				
Overview				

Formal Languages Basic concepts Definition Questions

Regular Languages

Formal Grammars

Formal complexity of Natural Languages

Sorbonne III Nouvelle

Formal Languages ○●○○○○○○ ○●○○○○○ ○○○○○	Regular Languages 00 00000000 000000000000000000000000	Formal Grammars	Formal complexity of Natural Languages ©©©©©©©© ©©©©©©©©©©©©©©©©©©©©©©©©©©	References
Definition				
Language				

Def. 7 (Formal Language)

Let Σ be an alphabet. A language on Σ is a set of words on $\Sigma.$

Formal Languages ○○○○○○○○○ ○●○○○○○ ○○○○○	Regular Languages 00 00000000 0000000000000000	Formal Grammars	Formal complexity of Natural Languages	References
Definition				
Definition				
Language				

Def. 7 (Formal Language)

> Let Σ be an alphabet. A language on Σ is a set of words on Σ . or, equivalently, A language on Σ is a subset of Σ^*

> > Sorbonne III Nouvelle III

Formal Languages ○○○○○○○○○ ○○○○○○	Regular Languages 00 00000000 0000000000000000	Formal Grammars	References
Definition			

Let
$$\Sigma = \{a, b, c\}$$
.

16/110

Formal Languages ○○○○○○○○○ ○○●○○○○ ○○○○○	Regular Languages 00 00000000 0000000000000000	Formal Grammars	References
Definition			

Let
$$\Sigma = \{a, b, c\}$$
.
$$L_1 = \{aa, ab, bac\}$$
finite language

16/110

Formal Languages ○○○○○○○○○ ○○●○○○○ ○○○○○	Regular Languages 00 00000000 0000000000000000	Formal Grammars	Formal complexity of Natural Languages communication constraints co	References
Definition				

Let
$$\Sigma = \{a, b, c\}$$
.

$$\frac{L_1 = \{aa, ab, bac\}}{L_2 = \{a, aa, aaa, aaaa \dots\}}$$
finite language

Sorbonne ;;; Nouvelle ;;;

Formal Languages ○○○○○○○○○ ○○●○○○○ ○○○○○	Regular Languages 00 00000000 0000000000000000	Formal Grammars	References
Definition			

Let
$$\Sigma = \{a, b, c\}$$
.

$$\begin{array}{c} L_1 = \{aa, ab, bac\} & \text{finite language} \\ \hline L_2 = \{a, aa, aaa, aaaa \dots\} \\ \text{or } L_2 = \{a^i \ / \ i \ge 1\} & \text{infinite language} \end{array}$$

Sorbonne ;;; Nouvelle ;;;

16/110

Formal Languages ○○○○○○○○○ ○○●○○○○ ○○○○○	Regular Languages 00 00000000 0000000000000000	Formal Grammars	References
Definition			

Let
$$\Sigma = \{a, b, c\}$$
.

$L_1 = \{aa, ab, bac\}$	finite language
$L_2=\{a,aa,aaa,aaaa\ldots\}$	
or $L_2=\{a^i \ / \ i\geq 1\}$	infinite language
$L_3 = \{\varepsilon\}$	finite language,
	reduced to a singleton

Sorbonne ;;;

16/110

Formal Languages ○○○○○○○○○ ○○●○○○○ ○○○○○	Regular Languages 00 00000000 0000000000000000	Formal Grammars	References
Definition			

Let
$$\Sigma = \{a, b, c\}$$
.

$L_1 = \{aa, ab, bac\}$	finite language
$L_2 = \{a, aa, aaa, aaaa \dots\}$	
or $L_2=\{a^i \ / \ i\geq 1\}$	infinite language
$L_3 = \{\varepsilon\}$	finite language,
	reduced to a singleton
	\neq

Formal Languages ○○○○○○○○○ ○○●○○○○ ○○○○○	Regular Languages 00 00000000 0000000000000000	Formal Grammars	References
Definition			

Let
$$\Sigma = \{a, b, c\}$$
.

$L_1 = \{aa, ab, bac\}$	finite language
$L_2 = \{a, aa, aaa, aaaa \dots\}$	
or $\mathit{L}_2 = \{\mathit{a}^i \ / \ i \geq 1\}$	infinite language
$L_3 = \{\varepsilon\}$	finite language,
	reduced to a singleton
	\neq
$L_4 = \emptyset$	"empty" language

Formal Languages ○○○○○○○○○ ○○●○○○○ ○○○○○	Regular Languages 00 00000000 0000000000000000	Formal Grammars	References
Definition			

Let
$$\Sigma = \{a, b, c\}$$
.

$L_1 = \{aa, ab, bac\}$	finite language
$L_2 = \{a, aa, aaa, aaaa \dots\}$	
or $L_2=\{a^i \mid i\geq 1\}$	infinite language
$L_3 = \{\varepsilon\}$	finite language,
	reduced to a singleton
	\neq
$L_4 = \emptyset$	"empty" language
$L_5 = \Sigma^*$	

Sorbonne ;;; Nouvelle ;;;

Formal Languages ○○○○○○○○○ ○○○○○○○○○○	Regular Languages 00 00000000 00000000000000000	Formal Grammars	Formal complexity of Natural Languages ©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©	References
Definition				

Let $\Sigma = \{a, man, loves, woman\}.$

17 / 110

Formal Languages	Regular Languages 00 00000000 0000000000000000	Formal Grammars	Formal complexity of Natural Languages	References
Definition				

Let
$$\Sigma = \{a, man, loves, woman\}.$$

 $L = \{ a \text{ man loves a woman, a woman loves a man } \}$

Formal Languages ○○○○○○○○○ ○○○●○○○ ○○○○○	Regular Languages 00 00000000 0000000000000000	Formal Grammars	References
Definition			

Let
$$\Sigma = \{a, man, loves, woman\}.$$

 $L = \{ a \text{ man loves a woman, a woman loves a man } \}$

Let
$$\Sigma' = \{a, man, who, saw, fell\}.$$

Formal Languages ○○○○○○○○○ ○○○○○○○○○○○○○○○○○○○○○○○○○○	Regular Languages 00 00000000 00000000000000000	Formal Grammars	Formal complexity of Natural Languages communo cococococ cocococococococococococococ	References
Definition				

Let
$$\Sigma = \{a, man, loves, woman\}.$$

 $L = \{ a \text{ man loves a woman, a woman loves a man } \}$

Let
$$\Sigma' = \{a, man, who, saw, fell\}.$$

$$\mathcal{L}' = \begin{cases} a \text{ man fell,} \\ a \text{ man who saw a man fell,} \\ a \text{ man who saw a man who saw a man fell,} \\ \dots \end{cases}$$

Sorbonne ;;; Nouvelle ;;;

Formal Languages ○○○○○○○○○ ○○○○○○○○○○○○○○○○○○○○○○○○○○	Regular Languages 00 00000000 000000000000000000000000	Formal Grammars	Formal complexity of Natural Languages	References
Definition				

Set operations

Since a language is a set, usual set operations can be defined:

- union
- intersection
- set difference

Formal Languages	Regular Languages 00 00000000 00000000000000000	Formal Grammars	Formal complexity of Natural Languages communication constraints co	References
Definition				

Set operations

Since a language is a set, usual set operations can be defined:

- union
- intersection
- set difference

⇒ One may describe a (complex) language as the result of set operations on (simpler) languages: ${a^{2k} / k \ge 1} = {a, aa, aaa, aaaa, ...} \cap {ww / w \in \Sigma^*}$

> Sorbonne III Nouvelle III

Formal Languages ○○○○○○○○○ ○○○○○●○ ○○○○○	Regular Languages 00 00000000 000000000000000000000000	Formal Grammars	Formal complexity of Natural Languages ©©©©©©©© ©©©©©©©©©©©©©©©©©©©©©©©©©©	References
Definition				

Additional operations

Def. 8 (product operation on languages)

One can define the *language product* and its closure *the Kleene star* operation:

▶ The *product* of languages is thus defined:

$$L_1.L_2 = \{uv \mid u \in L_1 \& v \in L_2\}$$

Notation: $\overbrace{L.L.L...L}^{k \text{ times}} = L^k$; $L^0 = \{\varepsilon\}$

The Kleene star of a language is thus defined:

 $L^* = \bigcup_{n \ge 0} L^n$

Sorbonne III Nouvelle III

Formal Languages ○○○○○○○○○ ○○○○○○	Regular Languages 00 00000000 0000000000000000	Formal Grammars	References
Definition			

Regular expressions

It is common to use the 3 rational operations:

- union
- product
- Kleene star

to characterize certain languages...

Formal Languages ○○○○○○○○○ ○○○○○● ○○○○○	Regular Languages 00 00000000 0000000000000000	Formal Grammars	Formal complexity of Natural Languages communication cococococo cococococo cococococo cocococo	References
Definition				

Regular expressions

It is common to use the 3 rational operations:

- union
- product
- Kleene star

to characterize certain languages...

 $(\{a\} \cup \{b\})^* . \{c\} = \{c, ac, abc, bc, \dots, baabaac, \dots\}$ (simplified notation $(a|b)^*c$ — regular expressions)

Sorbonne III Nouvelle

Formal Languages ○○○○○○○○○ ○○○○○● ○○○○○	Regular Languages 00 00000000 0000000000000000	Formal Grammars	Formal complexity of Natural Languages communo cococococo cococococo cococococo cocococo	References
Definition				

Regular expressions

It is common to use the 3 rational operations:

- union
- product
- Kleene star

to characterize certain languages...

 $(\{a\} \cup \{b\})^* \cdot \{c\} = \{c, ac, abc, bc, \dots, baabaac, \dots\}$ (simplified notation $(a|b)^*c$ — regular expressions)

... but not all languages can be thus characterized.

Sorbonne III Nouvelle

Formal Languages ○○○○○○○○○ ●○○○○○	Regular Languages 00 00000000 00000000000000000	Formal Grammars	Formal complexity of Natural Languages communication constraints co	References
Questions				
Overview				

Formal Languages Basic concepts Definition Questions

Regular Languages

Formal Grammars

Formal complexity of Natural Languages

Sorbonne III Nouvelle

Formal Languages	Regular Languages 00 00000000 000000000000000	Formal Grammars	References
Questions			

Back to "Natural" Languages

English as a formal language:

alphabet: morphemes (often simplified to words —depending on your view on flexional morphology)

 \Rightarrow Finite at a time *t* by hypothesis

words: well formed English sentences

 \Rightarrow English sentences are all finite by hypothesis

language: English, as a set of an infinite number of well formed combinations of "letters" from the alphabet

Sorbonne III Nouvelle III

Formal Languages ○○○○○○○○ ○○○○○○ ○○●○○	Regular Languages 00 00000000 0000000000000000	Formal Grammars		References
Questions				
Discussior	n I			
 is the alphabet finite? closed class morphemes obviously open class morphemes what about "new words"? 				

(1) motherese = mother + ese

Sorbonne III Nouvelle

Formal Languages ○○○○○○○○○ ○○●○○ ○○●○○	Regular Languages 00 00000000 0000000000000000	Formal Grammars	Formal complexity of Natural Languages	References
Questions				

Discussion II

- (2) $\operatorname{american}_A \to \operatorname{american}_N$
- 2. is English infinite ?
 - It is supposed that you can always profer a longer sentence than the previous one by adding linguistic material preserving well-formedness.
 - Compatible with the working memory limit

(Langendoen & Postal, 1984)

 is language discrete ? Well, that's another story

Formal Languages ○○○○○○○○ ○○○○○○○ ○○○●○	Regular Languages 00 00000000 000000000000000000000000	Formal Grammars	References
Questions			

Linguists sometimes have trouble with infinity: In order for there to be an infinite number of sentences in a language there must either be an infinite number of words in the language (clearly not true) or there must be the possibility of infinite length sentences. The product of two finite numbers is always a finite number. (Mannell, 1999) and many others

> Sorbonne III Nouvelle

Formal Languages ○○○○○○○○ ○○○○○○ ○○○●○	Regular Languages 00 00000000 0000000000000000	Formal Grammars	References
Questions			

Linguists sometimes have trouble with infinity:

In order for there to be an infinite number of sentences in a language there must either be an infinite number of words in the language (clearly not true) or there must be the possibility of infinite length sentences. The product of two finite numbers is always a finite number. (Mannell, 1999)

and many others

!! WRONG !!

Sorbonne ;;; Nouvelle ;;;

Formal Languages ○○○○○○○○ ○○○○○○ ○○○●○	Regular Languages 00 00000000 0000000000000000	Formal Grammars	Formal complexity of Natural Languages	References
Questions				

Linguists sometimes have trouble with infinity:

In order for there to be an infinite number of sentences in a language there must either be an infinite number of words in the language (clearly not true) or there must be the possibility of infinite length sentences. The product of two finite numbers is always a finite number. (Mannell, 1999)

and many others

!! WRONG !!

The whole point of formal languages is that they are infinite sets of finite words on a finite alphabet.

Sorbonne ;;; Nouvelle ;;;

Formal Languages ○○○○○○○○ ○○○○○○ ○○○●○	Regular Languages 00 00000000 0000000000000000	Formal Grammars	References
Questions			

Linguists sometimes have trouble with infinity:

In order for there to be an infinite number of sentences in a language there must either be an infinite number of words in the language (clearly not true) or there must be the possibility of infinite length sentences. The product of two finite numbers is always a finite number. (Mannell, 1999)

and many others

!! WRONG !!

The whole point of formal languages is that they are infinite sets of finite words on a finite alphabet.

von Humbolt: language is an infinite use of finite means

(quoted by Chomsky)

Formal Languages	Regular Languages 00 00000000 0000000000000000	Formal Grammars	Formal complexity of Natural Languages	References
Questions				

Good questions

Why would one consider natural language as a formal language?

- it allows to describe the language in a formal/compact/elegant way
- it allows to compare various languages (via classes of languages established by mathematicians)
- it give algorithmic tools to recognize and to analyse words of a language.

recognize u: decide whether $u \in L$ analyse u: show the internal structure of u

> Sorbonne ;;; Nouvelle ;;;

Formal Languages 000000000 000000 00000	Regular Languages ●O ○○○○○○○○ ○○○○○○○○○○○○○○○○○	Formal Grammars	References
Definition			

Overview

Formal Languages

Regular Languages Definition

Automata Properties

Formal Grammars

Formal complexity of Natural Languages

Sorbonne III Nouvelle III

Definition	Formal Languages 000000000 0000000 000000	Regular Languages ○● ○○○○○○○○ ○○○○○○○○○○○○○○○○○	Formal Grammars	Formal complexity of Natural Languages	References
Definition					
	Definition				

Definition

3 possible definitions

- $1.\,$ a regular language can be generated by a regular grammar
- 2. a regular language can be defined by rational expressions
- 3. a regular language can be recognized by a finite automaton

Def. 9 (Rational Language)

A rational language on Σ is a subset of Σ^* inductively defined thus:

- \emptyset and $\{\varepsilon\}$ are rational languages ;
- for all $a \in X$, the singleton $\{a\}$ is a rational language ;
- For all g and h rational, the sets g ∪ h, g.h and g* are rational languages.

Formal Languages 0000000000 0000000 000000	Regular Languages ○○ ●○○○○○○○○○ ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○	Formal Grammars	Formal complexity of Natural Languages occorrection occocococo occocococococococococococo	References
Automata				

Overview

Formal Languages

Regular Languages Definition Automata Properties

Formal Grammars

Formal complexity of Natural Languages

Sorbonne III Nouvelle

Formal Languages 0000000000 0000000 0000000 00000	Regular Languages ○○ ○●○○○○○○○○ ○○○○○○○○○○○○○○○	Formal Grammars	Formal complexity of Natural Languages	References
Automata				

Metaphoric definition

Sorbonne III Nouvelle III

Formal definition

Def. 10 (Finite deterministic automaton (FDA))

A finite state deterministic automaton ${\cal A}$ is defined by :

$$\mathcal{A} = \langle Q, \Sigma, q_0, F, \delta \rangle$$

- Q is a finite set of states
- $\boldsymbol{\Sigma}$ is an alphabet
- q_0 is a distinguished state, the initial state,
- F is a subset of Q, whose members are called final/terminal states
- δ is a mapping fonction from $Q \times \Sigma$ to Q. Notation $\delta(q, a) = r$.

Sorbonne ;;; Nouvelle ;;;

Example

Let us consider the (finite) language {aa, ab, abb, acba, accb}. The following automaton recognizes this langage: $\langle Q, \Sigma, q_0, F, \delta \rangle$, avec $Q = \{1, 2, 3, 4, 5, 6, 7\}$, $\Sigma = \{a, b, c\}$, $q_0 = 1$, $F = \{3, 4\}$, and δ is thus defined:

Formal Languages 0000000000 0000000 000000	Regular Languages ○○ ○○○●●○○○ ○○○○●○○○○	Formal Grammars	References
Automata			

Recognition

Recognition is defined as the existence of a sequence of states defined in the following way. Such a sequence is called a path in the automaton.

Def. 11 (Recognition)

A word $a_1a_2...a_n$ is **recognized**/accepted by an automaton iff there exists a sequence $k_0, k_1, ..., k_n$ of states such that:

$$k_0 = q_0$$

$$k_n \in F$$

$$\forall i \in [1, n], \ \delta(k_{i-1}, a_i) = k_i$$

Sorbonne ;;; Nouvelle ;;;

Formal Languages 0000000000 0000000 0000000 00000	Regular Languages	Formal Grammars	Formal complexity of Natural Languages ©©©©©©©©© ©©©©©©©©©©©©©©©©©©©©©©©©©©	References
Automata				
Example				

Sorbonne ;;;

Formal Languages	Regular Languages ○○ ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○	Formal Grammars	Formal complexity of Natural Languages	References
Automata				

Exercices

Let $\Sigma = \{a, b, c\}$. Give deterministic finite state automata that accept the following languages:

- 1. The set of words with an even length.
- 2. The set of words where the number of occurrences of *b* is divisible by 3.
- 3. The set of words ending with a b.
- 4. The set of words not ending with a b.
- 5. The set of words non empty not ending with a b.
- 6. The set of words comprising at least a b.
- 7. The set of words comprising at most a b.
- 8. The set of words comprising exactly one b.

Sorbonne III Nouvelle III