Ex. 1
Propose a complete deterministic finite state automaton which recognizes all the words from Σ^{*} that include an odd number of a s, one or two $c s$, and then an even number of bs $(\Sigma=\{a, b, c\})$.

Ex. 2
Consider the following regular grammar:

$$
\begin{aligned}
& S \rightarrow a B \mid b A \\
& A \rightarrow b A|a B| a \\
& B \rightarrow a C|b C| b \\
& C \rightarrow a B|a| b \mid c C
\end{aligned}
$$

1. Build the finite-state automaton corresponding to this grammar (hint: the states of the automaton correspond closely to the non-terminal symbols of the grammar).
2. Show the sequences of states corresponding to the recognition path of the words $b b b, b a c b a$ and $b a b c a a b$.
3. Give all the words of length ≤ 3 that are recognized by the automaton.
4. Is this automaton deterministic? If not, propose a deterministic finite-state automaton recognizing the same language.
